To drop the null rows in a Pandas DataFrame, use the dropna() method. Let’s say the following is our CSV file with some NaN i.e. null values −
Let us read the CSV file using read_csv(). Our CSV is on the Desktop −
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv")
Remove the null values using dropna() −
dataFrame = dataFrame.dropna()
Example
Following is the complete code −
import pandas as pd # reading csv file dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\CarRecords.csv") print("DataFrame...\n",dataFrame) # count the rows and columns in a DataFrame print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape) dataFrame = dataFrame.dropna() print("\nDataFrame after removing null values...\n",dataFrame) print("\n(Updated) Number of rows and column in our DataFrame = ",dataFrame.shape)
Output
This will produce the following output −
DataFrame... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai 110.0 2 RollsRoyce Pune NaN 3 BMW Delhi 200.0 4 Mercedes Hyderabad 80.0 5 Lamborghini Chandigarh NaN 6 Audi Mumbai NaN 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 Number of rows and column in our DataFrame = (9, 3) DataFrame after removing null values... Car Place UnitsSold 0 Audi Bangalore 80.0 1 Porsche Mumbai 110.0 3 BMW Delhi 200.0 4 Mercedes Hyderabad 80.0 7 Mercedes Pune 120.0 8 Lamborghini Delhi 100.0 (Updated) Number of rows and column in our DataFrame = (6, 3)