Bar Plot in Seaborn is used to show point estimates and confidence intervals as rectangular bars. The seaborn.barplot() is used for this. Display Standard Deviation of Observations using confidence interval ci parameter value sd.
Let’s say the following is our dataset in the form of a CSV file − Cricketers2.csv
At first, import the required libraries −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
Load data from a CSV file into a Pandas DataFrame −
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv")
Plotting bar plot with Academy and Matches. Display Standard Deviation of Observations using confidence interval parameter value "sd" −
sb.barplot(x = "Academy", y = "Matches",data = dataFrame, ci = "sd")
Example
Following is the code −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers2.csv") sb.set_theme(style="darkgrid") # plotting bar plot with Academy and Matches # Display Standard Deviation of Observations using confidence interval parameter value "sd" sb.barplot(x = "Academy", y = "Matches",data = dataFrame, ci = "sd") # display plt.show()
Output
This will produce the following output −