SactterPlot in Seaborn is used to draw a scatter plot with possibility of several semantic groupings. The seaborn.scatterplot() is used for this.
Let’s say the following is our dataset in the form of a CSV file − Cricketers.csv
At first, import the required 3 libraries −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
Load data from a CSV file into a Pandas DataFrame −
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv")
Plotting scatterplot with Age and Weight (kgs). The hue parameter set as "Role" −
sb.scatterplot(dataFrame['Age'],dataFrame['Weight'], hue=dataFrame['Role'])
Example
Following is the code −
import seaborn as sb
import pandas as pd
import matplotlib.pyplot as plt
# Load data from a CSV file into a Pandas DataFrame:
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv")
# plotting scatterplot with Age and Weight (kgs)
# hue parameter set as "Role"
sb.scatterplot(dataFrame['Age'],dataFrame['Weight'], hue=dataFrame['Role'])
plt.ylabel("Weight (kgs)")
plt.show()Output
This will produce the following example −

Example
Let us see another example, wherein we haven’t set the hue parameter. Following is the code −
import seaborn as sb
import pandas as pd
import matplotlib.pyplot as plt
# Load data from a CSV file into a Pandas DataFrame:
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv")
# plotting scatterplot with Age and Weight
# weight in kgs
sb.scatterplot(dataFrame['Age'],dataFrame['Weight'])
plt.ylabel("Weight (kgs)")
plt.show()Output
This will produce the following output −
