Point Plot in Seaborn is used to show point estimates and confidence intervals using scatter plot glyphs. The seaborn.pointplot() is used for this. Set caps to the error bars using the capsize parameter.
Let’s say the following is our dataset in the form of a CSV file − Cricketers.csv
At first, import the required libraries −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt
Load data from a CSV file into a Pandas DataFrame −
dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv")
Setting caps to the error bars using the capsize parameter −
sb.pointplot(dataFrame['Role'],dataFrame['Age'], capsize=.3)
Example
Following is the code −
import seaborn as sb import pandas as pd import matplotlib.pyplot as plt # Load data from a CSV file into a Pandas DataFrame dataFrame = pd.read_csv("C:\\Users\\amit_\\Desktop\\Cricketers.csv") sb.set_theme(style="darkgrid") # point plot # setting caps to the error bars using the capsize parameter sb.pointplot(dataFrame['Role'],dataFrame['Age'], capsize=.3) # display plt.show()
Output
This will produce the following output −