To check whether the date in DateTimeIndex belongs to a leap year, use the DateTimeIndex.is_leap_year property
At first, import the required libraries −
import pandas as pd
Create a DatetimeIndex with period 6 and frequency as Y i.e. years −
datetimeindex = pd.date_range('2021-12-30 02:30:50', periods=6, tz='Australia/Adelaide', freq='3Y')
Display DateTimeIndex −
print("DateTimeIndex...\n", datetimeindex)
Check whether the date in DateTimeIndex is a leap year or not −
print("\nCheck whether the date in DateTimeIndex belongs to a leap year or not...\n", datetimeindex.is_leap_year)
Example
Following is the code −
import pandas as pd # DatetimeIndex with period 6 and frequency as Y i.e. years # The timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-12-30 02:30:50', periods=6, tz='Australia/Adelaide', freq='3Y') # display DateTimeIndex print("DateTimeIndex...\n", datetimeindex) # display DateTimeIndex frequency print("\nDateTimeIndex frequency...\n", datetimeindex.freq) # Check whether the date in DateTimeIndex is a leap year or not print("\nCheck whether the date in DateTimeIndex belongs to a leap year or not...\n", datetimeindex.is_leap_year)
Output
This will produce the following code −
DateTimeIndex... DatetimeIndex(['2021-12-31 02:30:50+10:30', '2024-12-31 02:30:50+10:30', '2027-12-31 02:30:50+10:30', '2030-12-31 02:30:50+10:30', '2033-12-31 02:30:50+10:30', '2036-12-31 02:30:50+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='3A-DEC') DateTimeIndex frequency... <3 * YearEnds: month=12> Check whether the date in DateTimeIndex belongs to a leap year or not... [False True False False False True]