To snap time stamps in DateTimeIndex to nearest occurring frequency, use the DateTimeIndex.snap() method. Set the frequency using the freq parameter.
At first, import the required libraries −
import pandas as pd
Create a DatetimeIndex with period 6 and frequency as D i.e. day −
datetimeindex = pd.date_range('2021-10-20 02:30:50', periods=6, tz='Australia/Adelaide', freq='D')
Display DateTimeIndex −
print("DateTimeIndex...\n", datetimeindex)
Snap time stamps to nearest occurring i.e. Month end here −
print("\nSnap time stamps to nearest occurring frequency...\n", datetimeindex.snap(freq='M'))
Example
Following is the code −
import pandas as pd # DatetimeIndex with period 6 and frequency as D i.e. day # The timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-10-20 02:30:50', periods=6, tz='Australia/Adelaide', freq='D') # display DateTimeIndex print("DateTimeIndex...\n", datetimeindex) # display DateTimeIndex frequency print("\nDateTimeIndex frequency...\n", datetimeindex.freq) # Snap time stamps to nearest occurring i.e. Month end here print("\nSnap time stamps to nearest occurring frequency...\n", datetimeindex.snap(freq='M'))
Output
This will produce the following code −
DateTimeIndex... DatetimeIndex(['2021-10-20 02:30:50+10:30', '2021-10-21 02:30:50+10:30', '2021-10-22 02:30:50+10:30', '2021-10-23 02:30:50+10:30', '2021-10-24 02:30:50+10:30', '2021-10-25 02:30:50+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='D') DateTimeIndex frequency... <Day> Snap time stamps to nearest occurring frequency... DatetimeIndex(['2021-10-31 02:30:50+10:30', '2021-10-31 02:30:50+10:30', '2021-10-31 02:30:50+10:30', '2021-10-31 02:30:50+10:30', '2021-10-31 02:30:50+10:30', '2021-10-31 02:30:50+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq=None)