To extract year from the DateTimeIndex with specific time series frequency, use the DateTimeIndex.year property.
At first, import the required libraries −
import pandas as pd
DatetimeIndex with period 6 and frequency as Y i.e. years. The timezone is Australia/Sydney −
datetimeindex = pd.date_range('2021-09-24 02:35:55', periods=6, tz='Australia/Sydney',freq='Y')
Display DateTimeIndex −
print("DateTimeIndex...\n", datetimeindex)
Get the year −
print("\nGetting the year name..\n",datetimeindex.year)
Example
Following is the code −
import pandas as pd # DatetimeIndex with period 6 and frequency as Y i.e. years # timezone is Australia/Sydney datetimeindex = pd.date_range('2021-09-24 02:35:55', periods=6, tz='Australia/Sydney', freq='Y') # display DateTimeIndex print("DateTimeIndex...\n", datetimeindex) # display DateTimeIndex frequency print("DateTimeIndex frequency...\n", datetimeindex.freq) # get the year print("\nGetting the year name..\n",datetimeindex.year)
Output
This will produce the following output −
DateTimeIndex... DatetimeIndex(['2021-12-31 02:35:55+11:00', '2022-12-31 02:35:55+11:00', '2023-12-31 02:35:55+11:00', '2024-12-31 02:35:55+11:00', '2025-12-31 02:35:55+11:00', '2026-12-31 02:35:55+11:00'], dtype='datetime64[ns, Australia/Sydney]', freq='A-DEC') DateTimeIndex frequency... <YearEnd: month=12> Getting the year name.. Int64Index([2021, 2022, 2023, 2024, 2025, 2026], dtype='int64')