To perform floor operation on the DateTimeIndex with hourly frequency, use the DateTimeIndex.floor() method. For hourly frequency, use the freq parameter with value ‘H’.
At first, import the required libraries −
import pandas as pd
Create a DatetimeIndex with period 5 and frequency as min i.e. minutes −
datetimeindex = pd.date_range('2021-09-29 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='20min')
Display DateTimeInde −
print("DateTimeIndex...\n", datetimeindex)
Floor operation on DateTimeIndex date with hourly frequency, For hourly frequency, we have used 'H' −
print("\nPerforming floor operation with hourly frequency...\n", datetimeindex.floor(freq='H'))
Example
Following is the code −
import pandas as pd # DatetimeIndex with period 5 and frequency as min i.e. minutes # timezone is Australia/Adelaide datetimeindex = pd.date_range('2021-09-29 07:20:32.261811624', periods=5, tz='Australia/Adelaide', freq='20min') # display DateTimeIndex print("DateTimeIndex...\n", datetimeindex) # display DateTimeIndex frequency print("DateTimeIndex frequency...\n", datetimeindex.freq) # Floor operation on DateTimeIndex date with hourly frequency # For hourly frequency, we have used 'H' print("\nPerforming floor operation with hourly frequency...\n", datetimeindex.floor(freq='H'))
Output
This will produce the following code −
DateTimeIndex... DatetimeIndex(['2021-09-29 07:20:32.261811624+09:30', '2021-09-29 07:40:32.261811624+09:30', '2021-09-29 08:00:32.261811624+09:30', '2021-09-29 08:20:32.261811624+09:30', '2021-09-29 08:40:32.261811624+09:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='20T') DateTimeIndex frequency... <20 * Minutes> Performing floor operation with hourly frequency... DatetimeIndex(['2021-09-29 07:00:00+09:30', '2021-09-29 07:00:00+09:30', '2021-09-29 08:00:00+09:30', '2021-09-29 08:00:00+09:30', '2021-09-29 08:00:00+09:30'], dtype='datetime64[ns, Australia/Adelaide]', freq=None)