Suppose we have two long integer values maximum and minimum. We have to find a common fraction n/d such that min <= d <= max. And |n/d - pi| is smallest. Here pi = 3.14159265... and if there are more than one fractions holding this condition, then return the fraction with smallest denominator.
So, if the input is like minimum = 1 maximum = 10, then the output will be 22/7.
To solve this, we will follow these steps −
- P := a fraction (5706674932067741 / 1816491048114374) - 3
- a := 0, b := 1, c := 1, d := 1
- farey := an array of pairs, it has two pairs initially (a, b) and (c, d)
- Loop through the following unconditionally -
- f := b + d
- if f > maximum - minimum, then
- come out from the loop
- e := a + c
- insert pair (e, f) at the end of farey
- if P < the value of (e/f), then
- c := e and d := f
- therwise,
- a := e and b := f
- p_min := floor of (P * minimum)
- while minimum <= maximum, do
- c := 0, d := 0
- for each pair (a, b) in farey, do
- if minimum + b > maximum, then
- come out from the loop
- if |(p_min + a)/ (minimum + b) - P| <|p_min / minimum - P|, then
- c := a, d := b
- come out from the loop
- if minimum + b > maximum, then
- if d is same as 0, then
- come out from the loop
- p_min := p_min + c
- o minimum := minimum + d
- o return fraction (p_min + 3 * minimum) / minimum
Example
Let us see the following implementation to get better understanding −
from fractions import Fraction def solve(minimum, maximum): P = Fraction(5706674932067741, 1816491048114374) - 3 a, b, c, d = 0, 1, 1, 1 farey = [(a,b),(c,d)] while True: f = b + d if f > maximum - minimum: break e = a + c farey.append((e, f)) if P < Fraction(e, f): c, d = e, f else: a, b = e, f p_min = int(P * minimum) while minimum <= maximum: c, d = 0, 0 for a, b in farey: if minimum + b > maximum: break if abs(Fraction(p_min + a, minimum + b).real - P) < abs(Fraction(p_min, minimum).real - P): c, d = a, b break if d == 0: break p_min += c minimum += d return ("{}/{}".format(p_min + 3 * minimum, minimum)) minimum = 1 maximum = 10 print(solve(minimum, maximum))
Input
4, 27
Output
22/7