To have the line color vary with the data index for a line graph in matplotlib, we can take the following steps −
Steps
Set the figure size and adjust the padding between and around the subplots.
Create x and y data points using numpy.
Get smaller limit, dydx.
Get the points and segments data points using numpy.
Create a figure and a set of subplots.
Create a class which, when called, linearly normalizes data into some range.
Set the image array from numpy array *A*.
Set the linewidth(s) for the collection.
Set the colorbar for axis 1.
Generate Colormap object from a list of colors i.e r, g and b.
Repeat steps 6, 7, 8, 9 and 10.
Set the limit of the X and Y axes.
To display the figure, use show() method.
Example
import numpy as np import matplotlib.pyplot as plt from matplotlib.collections import LineCollection from matplotlib.colors import ListedColormap, BoundaryNorm plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True x = np.linspace(0, 3 * np.pi, 500) y = np.sin(x) dydx = np.cos(0.5 * (x[:-1] + x[1:])) points = np.array([x, y]).T.reshape(-1, 1, 2) segments = np.concatenate([points[:-1], points[1:]], axis=1) fig, axs = plt.subplots(2, 1, sharex=True, sharey=True) norm = plt.Normalize(dydx.min(), dydx.max()) lc = LineCollection(segments, cmap='viridis', norm=norm) lc.set_array(dydx) lc.set_linewidth(2) line = axs[0].add_collection(lc) fig.colorbar(line, ax=axs[0]) cmap = ListedColormap(['r', 'g', 'b']) norm = BoundaryNorm([-1, -0.5, 0.5, 1], cmap.N) lc = LineCollection(segments, cmap=cmap, norm=norm) lc.set_array(dydx) lc.set_linewidth(2) line = axs[1].add_collection(lc) fig.colorbar(line, ax=axs[1]) axs[0].set_xlim(x.min(), x.max()) axs[0].set_ylim(-1.1, 1.1) plt.show()
Output
It will produce the following output −