To test whether similar int type of different sizes are subdtypes of integer class, use the numpy.issubdtype() method in Python Numpy. The parameters are the dtype or object coercible to one.
Steps
At first, import the required library −
import numpy as np
Using the issubdtype() method in Numpy. Checking for integer datatype with different sizes −
print("Result...",np.issubdtype(np.int16, np.signedinteger)) print("Result...",np.issubdtype(np.int32, np.signedinteger)) print("Result...",np.issubdtype(np.int64, np.signedinteger)) print("Result...",np.issubdtype(np.int16, np.integer)) print("Result...",np.issubdtype(np.int32, np.integer)) print("Result...",np.issubdtype(np.int64, np.integer))
Example
import numpy as np # To test whether similar int type of different sizes are subdtypes of integer class, use the numpy.issubdtype() method in Python Numpy. # The parameters are the dtype or object coercible to one print("Using the issubdtype() method in Numpy\n") # Checking for integer datatype with different sizes print("Result...",np.issubdtype(np.int16, np.signedinteger)) print("Result...",np.issubdtype(np.int32, np.signedinteger)) print("Result...",np.issubdtype(np.int64, np.signedinteger)) print("Result...",np.issubdtype(np.int16, np.integer)) print("Result...",np.issubdtype(np.int32, np.integer)) print("Result...",np.issubdtype(np.int64, np.integer))
Output
Using the issubdtype() method in Numpy Result... True Result... True Result... True Result... True Result... True Result... True