To check whether similar data types of different sizes are not subdtypes of each other, use the numpy.issubdtype() method in Python Numpy. The parameters are the dtype or object coercible to one.
Steps
At first, import the required library −
import numpy as np
Using the issubdtype() method in Nump to check for similar datatypes with different sizes. Checking for float datatype with different sizes −
print("Result...",np.issubdtype(np.float32, np.float64)) print("Result...",np.issubdtype(np.float64, np.float32))
Checking for int datatype with different sizes −
print("Result...",np.issubdtype(np.int16, np.int32)) print("Result...",np.issubdtype(np.int32, np.int16)) print("Result...",np.issubdtype(np.int64, np.int32)) print("Result...",np.issubdtype(np.int32, np.int64))
Example
import numpy as np # To check whether similar data types of different sizes are not subdtypes of each other, use the numpy.issubdtype() method in Python Numpy. # The parameters are the dtype or object coercible to one print("Using the issubdtype() method in Numpy\n") # Checking for similar datatypes with different sizes # Checking for float datatype with different sizes print("Result...",np.issubdtype(np.float32, np.float64)) print("Result...",np.issubdtype(np.float64, np.float32)) # Checking for int datatype with different sizes print("Result...",np.issubdtype(np.int16, np.int32)) print("Result...",np.issubdtype(np.int32, np.int16)) print("Result...",np.issubdtype(np.int64, np.int32)) print("Result...",np.issubdtype(np.int32, np.int64))
Output
Using the issubdtype() method in Numpy Result... False Result... False Result... False Result... False Result... False Result... False