To return matrix rank of array using Singular Value Decomposition method, use the numpy.linalg.matrix_rank() method in Python. Rank of the array is the number of singular values of the array that are greater than tol. The 1st parameter, A is the input vector or stack of matrices.
The 2nd parameter, tol is the Threshold below which SVD values are considered zero. If tol is None, and S is an array with singular values for M, and eps is the epsilon value for datatype of S, then tol is set to S.max() * max(M, N) * eps. The 3rd parameter, hermitian, If True, A is assumed to be Hermitian, enabling a more efficient method for finding singular values. Defaults to False.
Steps
At first, import the required libraries-
import numpy as np from numpy.linalg import matrix_rank
Create an array −
arr = np.eye(5)
Display the array −
print("Our Array...\n",arr)
Check the Dimensions −
print("\nDimensions of our Array...\n",arr.ndim)
Get the Datatype −
print("\nDatatype of our Array object...\n",arr.dtype)
Get the Shape −
print("\nShape of our Array object...\n",arr.shape)
To return matrix rank of array using Singular Value Decomposition method, use the numpy.linalg.matrix_rank() method −
print("\nRank...\n",matrix_rank(arr)) arr[-1,-1] = 0. print("\nUpdated Rank (Rank-Deficit Matrix)...\n",matrix_rank(arr))
Example
import numpy as np from numpy.linalg import matrix_rank # Create an array arr = np.eye(5) # Display the array print("Our Array...\n",arr) # Check the Dimensions print("\nDimensions of our Array...\n",arr.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",arr.dtype) # Get the Shape print("\nShape of our Array object...\n",arr.shape) # To Return matrix rank of array using Singular Value Decomposition method, use the numpy.linalg.matrix_rank() method in Python print("\nRank...\n",matrix_rank(arr)) arr[-1,-1] = 0. print("\nUpdated Rank (Rank-Deficit Matrix)...\n",matrix_rank(arr))
Output
Our Array... [[1. 0. 0. 0. 0.] [0. 1. 0. 0. 0.] [0. 0. 1. 0. 0.] [0. 0. 0. 1. 0.] [0. 0. 0. 0. 1.]] Dimensions of our Array... 2 Datatype of our Array object... float64 Shape of our Array object... (5, 5) Rank... 5 Updated Rank (Rank-Deficit Matrix)... 4