To compute the (multiplicative) inverse of a matrix, use the numpy.linalg.inv() method in Python. Given a square matrix a, return the matrix ainv satisfying dot(a, ainv) = dot(ainv, a) = eye(a.shape[0]). The method returns (Multiplicative) inverse of the matrix a. The 1st parameter, a is a Matrix to be inverted.
Steps
At first, import the required libraries-
import numpy as np from numpy.linalg import inv
Create several matrices using array() −
arr = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]])
Display the array −
print("Our Array...\n",arr)
Check the Dimensions −
print("\nDimensions of our Array...\n",arr.ndim)
Get the Datatype −
print("\nDatatype of our Array object...\n",arr.dtype)
Get the Shape −
print("\nShape of our Array object...\n",arr.shape)
To compute the (multiplicative) inverse of a matrix, use the numpy.linalg.inv() method in Python −
print("\nResult...\n",np.linalg.inv(arr))
Example
import numpy as np from numpy.linalg import inv # Create several matrices using array() arr = np.array([[[1., 2.], [3., 4.]], [[1, 3], [3, 5]]]) # Display the array print("Our Array...\n",arr) # Check the Dimensions print("\nDimensions of our Array...\n",arr.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",arr.dtype) # Get the Shape print("\nShape of our Array object...\n",arr.shape) # To compute the (multiplicative) inverse of a matrix, use the numpy.linalg.inv() method in Python. print("\nResult...\n",np.linalg.inv(arr))
Output
Our Array... [[[1. 2.] [3. 4.]] [[1. 3.] [3. 5.]]] Dimensions of our Array... 3 Datatype of our Array object... float64 Shape of our Array object... (2, 2, 2) Result... [[[-2. 1. ] [ 1.5 -0.5 ]] [[-1.25 0.75] [ 0.75 -0.25]]]