To return the scaled companion matrix of a 1-D array of Laguerre polynomial coefficients, use the laguerre.lagvander3d() in Python Numpy. The usual companion matrix of the Laguerre polynomials is already symmetric when c is a basis Laguerre polynomial, so no scaling is applied.
Returns the Companion matrix of dimensions (deg, deg). The parameter, c is a 1-D array of Laguerre series coefficients ordered from low to high degree.
Steps
At first, import the required library −
import numpy as np from numpy.polynomial import laguerre as L
Create a 1D array of coefficients −
c = np.array([1, 2, 3])
Display the array −
print("Our Array...\n",c)
Check the Dimensions −
print("\nDimensions of our Array...\n",c.ndim)
Get the Datatype −
print("\nDatatype of our Array object...\n",c.dtype)
Get the Shape −
print("\nShape of our Array object...\n",c.shape)
To return the scaled companion matrix of a 1-D array of Laguerre polynomial coefficients, use the laguerre.lagvander3d() in Python Numpy −
print("\nResult...\n",L.lagcompanion(c))
Example
import numpy as np from numpy.polynomial import laguerre as L # Create a 1D array of coefficients c = np.array([1, 2, 3]) # Display the array print("Our Array...\n",c) # Check the Dimensions print("\nDimensions of our Array...\n",c.ndim) # Get the Datatype print("\nDatatype of our Array object...\n",c.dtype) # Get the Shape print("\nShape of our Array object...\n",c.shape) # To return the scaled companion matrix of a 1-D array of Laguerre polynomial coefficients, use the laguerre.lagvander3d() in Python Numpy print("\nResult...\n",L.lagcompanion(c))
Output
Our Array... [1 2 3] Dimensions of our Array... 1 Datatype of our Array object... int64 Shape of our Array object... (3,) Result... [[ 1. -0.33333333] [-1. 4.33333333]]