To generate a Hermite_e series with given complex roots, use the hermite_e.hermefromroots() method in Python Numpy. The method returns a 1-D array of coefficients. If all roots are real then out is a real array, if some of the roots are complex, then out is complex even if all the coefficients in the result are real. The parameter roots are the sequence containing the roots.
Steps
At first, import the required library −
from numpy.polynomial mport hermite_e as H
Generate a Hermite_e series with given complex roots −
j = complex(0,1) print("Result...\n",H.hermefromroots((-j, j)))
Get the datatype −
print("\nType...\n",H.hermefromroots((-j, j)).dtype)
Get the shape −
print("\nShape...\n",H.hermefromroots((-j, j)).shape)Create an array
Example
from numpy.polynomial import hermite_e as H j = complex(0,1) print("Result...\n",H.hermefromroots((-j, j))) # Get the datatype print("\nType...\n",H.hermefromroots((-j, j)).dtype) # Get the shape print("\nShape...\n",H.hermefromroots((-j, j)).shape)
Output
Result... [2.+0.j 0.+0.j 1.+0.j] Type... complex128 Shape... (3,)