In this tutorial, we are going to learn about the most common methods of a list i.e.., append() and extend(). Let's see them one by one.
apply()
It is used to apply a function to every row of a DataFrame. For example, if we want to multiply all the numbers from each and add it as a new column, then apply() method is beneficial. Let's see different ways to achieve it.
Example
# importing the pandas package import pandas as pd # function to multiply def multiply(x, y): return x * y # creating a dictionary for DataFrame data = { 'Maths': [10, 34, 53], 'Programming': [23, 12, 43] } # creating DataFrame using the data data_frame = pd.DataFrame(data) # displaying DataFrame print('--------------------Before------------------') print(data_frame) print() # applying the function multiply data_frame['Multiply'] = data_frame.apply(lambda row : multiply(row['Maths'], row[' Programming']), axis = 1) # displaying DataFrame print('--------------------After------------------') print(data_frame)
Output
If you run the above program, you will get the following results.
--------------------Before------------------ Maths Programming 0 10 23 1 34 12 2 53 43 --------------------After------------------ Maths Programming Multiply 0 10 23 230 1 34 12 408 2 53 43 2279
Example
We can also use predefined functions like sum, pow, etc..,
# importing the pandas package import pandas as pd # creating a dictionary for DataFrame data = { 'Maths': [10, 34, 53], 'Programming': [23, 12, 43] } # creating DataFrame using the data data_frame = pd.DataFrame(data) # displaying DataFrame print('--------------------Before------------------') print(data_frame) print() # applying the function multiply # using built-in sum function data_frame['Multiply'] = data_frame.apply(sum, axis = 1) # displaying DataFrame print('--------------------After------------------') print(data_frame)
Output
If you run the above program, you will get the following results.
--------------------Before------------------ Maths Programming 0 10 23 1 34 12 2 53 43 --------------------After------------------ Maths Programming Multiply 0 10 23 33 1 34 12 46 2 53 43 96
Example
We can also use functions from the numpy module. Let's see one example.
# importing the pandas package import pandas as pd # importing numpy module for functions import numpy as np # creating a dictionary for DataFrame data = { 'Maths': [10, 34, 53], 'Programming': [23, 12, 43] } # creating DataFrame using the data data_frame = pd.DataFrame(data) # displaying DataFrame print('--------------------Before------------------') print(data_frame) print() # applying the function multiply # using sum function from the numpy module data_frame['Multiply'] = data_frame.apply(np.sum, axis = 1) # displaying DataFrame print('--------------------After------------------') print(data_frame)
Output
If you run the above program, you will get the following results.
--------------------Before------------------ Maths Programming 0 10 23 1 34 12 2 53 43 --------------------After------------------ Maths Programming Multiply 0 10 23 33 1 34 12 46 2 53 43 96
Conclusion
In the above ways, we can use apply() method of DataFrame to apply a function for all the rows. If you have any doubts regarding the tutorial, mention them in the comment section.