Suppose we have a positive integer n, we have to generate a square matrix with n2 elements in spiral order. So if n = 5, then the matrix will be −
1 | 2 | 3 | 4 |
12 | 13 | 14 | 5 |
11 | 16 | 15 | 6 |
10 | 9 | 8 | 7 |
Let us see the steps −
- set (row1, col1) := (0, 0) and (row2, col2) := (n, n), and create one matrix called res, then fill it with 0s, and set num := 1
- while num <= n2,
- for i in range col1 to col2,
- res[row1, i] = num, incase num by 1
- if num > n2, then break
- for i in range row1 + 1 to row2,
- res[i, col2-1] = num, incase num by 1
- if num > n2, then break
- for i in range col2 – 2 down to col1 – 1,
- res[row2 – 1, i] = num, incase num by 1
- if num > n2, then break
- for i in range row2 – 2 down to row1,
- res[i, col1] = num, incase num by 1
- increase row1 by 1, decrease row2 by 1, increase col1 by 1 and decrease col2 by 1
- for i in range col1 to col2,
- return res
Let us see the following implementation to get better understanding −
Example
class Solution(object): def generateMatrix(self, n): row1 = 0 col1 = 0 row2 = n col2 = n result = [ [0 for i in range(n)] for j in range(n)] num = 1 while num<=n**2: for i in range(col1,col2): result[row1][i] = num num+=1 if num > n**2: break for i in range(row1+1,row2): result[i][col2-1] = num num+=1 if num > n**2: break for i in range(col2-2,col1-1,-1): result[row2-1][i] = num num+=1 if num > n**2: break for i in range(row2-2,row1,-1): result[i][col1] = num num+=1 row1+=1 row2-=1 col1+=1 col2-=1 #print(result) return result ob1 = Solution() print(ob1.generateMatrix(4))
Input
4
Output
[[1, 2, 3, 4], [12, 13, 14, 5], [11, 16, 15, 6], [10, 9, 8, 7]]