Suppose we have the root of a binary tree, each node is containing a value from 0 to 25 , which are representing the letters 'a' to 'z': a value of 0 represents 'a', a value of 1 represents 'b', and so on. We have to search the lexicographically smallest string that starts at a leaf of this tree and finishes at the root. So if the tree is like −
Then the output will be “adz” as the sequence is [0,3,25]
To solve this, we will follow these steps −
Define a dfs traversal method as follows
if node is not null, then
insert node value as a character into A
if node has no left and right child, then
ans := minimum of ans and A elements as string in reversed form
delete the last element from A
return
perform dfs(left of node, A)
perform dfs(right of node, A)
Delete last element from A
return
The actual method will be like −
ans := “~”
call dfs(root, an empty array as A)
return ans
Let us see the following implementation to get better understanding −
Example
class TreeNode: def __init__(self, data, left = None, right = None): self.data = data self.left = left self.right = right def insert(temp,data): que = [] que.append(temp) while (len(que)): temp = que[0] que.pop(0) if (not temp.left): if data is not None: temp.left = TreeNode(data) else: temp.left = TreeNode(0) break else: que.append(temp.left) if (not temp.right): if data is not None: temp.right = TreeNode(data) else: temp.right = TreeNode(0) break else: que.append(temp.right) def make_tree(elements): Tree = TreeNode(elements[0]) for element in elements[1:]: insert(Tree, element) return Tree class Solution(object): def smallestFromLeaf(self, root): self.ans = "~" self.dfs(root,[]) return self.ans def dfs(self, node, A): if node: A.append(chr(node.data + ord('a'))) if not node.left and not node.right: self.ans = min(self.ans, ''.join(reversed(A))) A.pop() return self.dfs(node.left,A) self.dfs(node.right,A) A.pop() return root = make_tree([25,1,3,1,3,0,2]) ob = Solution() print(ob.smallestFromLeaf(root))
Input
[25,1,3,1,3,0,2]
Output
adz