Solution
Assume you have a dataframe and mean absolute deviation of rows and column is,
mad of columns: Column1 0.938776 Column2 0.600000 dtype: float64 mad of rows: 0 0.500 1 0.900 2 0.650 3 0.900 4 0.750 5 0.575 6 1.325 dtype: float64
To solve this, we will follow the steps given below −
Define a dataframe
Calculate mean absolute deviation of row as,
df.mad()
Calculate mean absolute deviation of row as,
df.mad(axis=1)
Example
Let’s see the following code to get a better understanding −
import pandas as pd data = {"Column1":[6, 5.3, 5.9, 7.8, 7.6, 7.45, 7.75], "Column2":[7, 7.1, 7.2, 6, 6.1, 6.3, 5.1]} df = pd.DataFrame(data) print("DataFrame is:\n",df) print("mad of columns:\n",df.mad()) print("mad of rows:\n",df.mad(axis=1))
Output
DataFrame is: Column1 Column2 0 6.00 7.0 1 5.30 7.1 2 5.90 7.2 3 7.80 6.0 4 7.60 6.1 5 7.45 6.3 6 7.75 5.1 mad of columns: Column1 0.938776 Column2 0.600000 dtype: float64 mad of rows: 0 0.500 1 0.900 2 0.650 3 0.900 4 0.750 5 0.575 6 1.325 dtype: float64