Gaussian filtering an image with NaN values makes all the values of a matrix NaN, which produces an NaN valued matrix.
Steps
- Create a figure and a set of subplots.
- Create a matrix with NaN value in that matrix.
- Display the data as an image, i.e., on a 2D regular raster, data.
- Apply Gaussian filter on the data.
- Display the data as an image, i.e., on a 2D regular raster, gaussian_filter_data.
- To display the figure, use show() method.
Example
import numpy as np from matplotlib import pyplot as plt from scipy.ndimage import gaussian_filter plt.rcParams["figure.figsize"] = [7.00, 3.50] plt.rcParams["figure.autolayout"] = True fig, axes = plt.subplots(2) data = np.array([[1., 1.2, 0.89, np.nan], [1.2, np.nan, 1.89, 2.09], [.78, .67, np.nan, 1.78], [np.nan, 1.56, 1.89, 2.78]]) axes[0].imshow(data, cmap="cubehelix_r") gaussian_filter_data = gaussian_filter(data, sigma=1) axes[1].imshow(gaussian_filter_data, cmap="cubehelix_r") plt.show()