To plot yscale with class by name, we can take the following steps
- Set the figure size and adjust the padding between and around the subplots.
- Create y data points using numpy.
- Create x data points using numpy.
- Add a subplot to the current figure at index 1.
- Plot x and y data points using plot() method.
- For linear class by name, use yscale("linear") method.
- Set the title of the current subplot.Repeat the steps from 4 to 5 with different indices, yscale() class by name, and title of the plot.
- To display the figure, use show() method.
Example
import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True y = np.random.normal(loc=0.5, scale=0.4, size=1000) y = y[(y > 0) & (y < 1)] y.sort() x = np.arange(len(y)) # linear plt.subplot(221) plt.plot(x, y) plt.yscale('linear') plt.title('linear') # log plt.subplot(222) plt.plot(x, y) plt.yscale('log') plt.title('log') # symmetric log plt.subplot(223) plt.plot(x, y - y.mean()) plt.yscale('symlog', linthreshy=0.01) plt.title('symlog') # logit plt.subplot(224) plt.plot(x, y) plt.yscale('logit') plt.title('logit') plt.show()