To understand Seaborn's heatmap annotation format, we can take the following steps −
Set the figure size and adjust the padding between and around the subplots.
Create a Pandas dataframe with five columns.
Plot the rectangular data as a color-encoded matrix, fmt=".2%" represents the annotation format.
To display the figure, use show() method.
Example
Example
import seaborn as sns import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.rcParams["figure.figsize"] = [7.50, 3.50] plt.rcParams["figure.autolayout"] = True df = pd.DataFrame(np.random.random((5, 5)), columns=["a", "b", "c", "d", "e"]) sns.heatmap(df, annot=True, annot_kws={"size": 7}, fmt=".2%") plt.show()