To count unique values per groups in Python Pandas, we can use df.groupby('column_name').count().
Steps
- Create a two-dimensional, size-mutable, potentially heterogeneous tabular data, df.
- Print the input DataFrame, df.
- Use df.groupby('rank')['id'].count() to find the count of unique values per groups and store it in a variable "count".
- Print the count from Step 3.
Example
import pandas as pd df = pd.DataFrame( { "id": [1, 2, 1, 3, 5, 1, 4, 3, 6, 7], 'rank': [1, 4, 1, 2, 1, 4, 6, 1, 5, 3] } ) print"Input DataFrame 1 is:\n", df count = df.groupby('rank')['id'].count() print"Frequency of ranks:\n", count
Output
Input DataFrame 1 is: id rank 0 1 1 1 2 4 2 1 1 3 3 2 4 5 1 5 1 4 6 4 6 7 3 1 8 6 5 9 7 3 Frequency of ranks: rank 1 4 2 1 3 1 4 2 5 1 6 1 Name: id, dtype: int64