Computer >> Computer tutorials >  >> Programming >> Python

How to extract the value names and counts from value_counts() in Python Pandas?


To extract the value names and counts, let us first create a DataFrame with 4 columns −

dataFrame = pd.DataFrame({
"Car": ['BMW', 'Mustang', 'Tesla', 'Mustang', 'Mercedes', 'Tesla', 'Audi'],"Cubic Capacity": [2000, 1800, 1500, 2500, 2200, 3000, 2000],"Reg Price": [7000, 1500, 5000, 8000, 9000, 6000, 1500],"Units Sold": [ 200, 120, 150, 120, 210, 250, 220]
})

Fetch the value names and count for a specific column Car −

res = dataFrame['Car'].value_counts()

Fetch the value names and count for a specific column Units Sold −

res = dataFrame['Units Sold'].value_counts()

Example

Following is the complete code −

import pandas as pd

# creating dataframe
dataFrame = pd.DataFrame({"Car": ['BMW', 'Mustang', 'Tesla', 'Mustang', 'Mercedes', 'Tesla', 'Audi'],"Cubic Capacity": [2000, 1800, 1500, 2500, 2200, 3000, 2000],"Reg Price": [7000, 1500, 5000, 8000, 9000, 6000, 1500],"Units Sold": [ 200, 120, 150, 120, 210, 250, 220]
})

print"DataFrame ...\n",dataFrame

res = dataFrame['Car'].value_counts()
print"\nDisplaying value name and counts from the column Car:\n",res

res = dataFrame['Units Sold'].value_counts()
print"\nDisplaying value name and counts from the column Units Sold:\n",res

Output

This will produce the following output −

DataFrame ...
        Car   Cubic Capacity   Reg Price   Units Sold
0       BMW            2000        7000          200
1   Mustang            1800        1500          120
2     Tesla            1500        5000          150
3   Mustang            2500        8000          120
4  Mercedes            2200        9000          210
5     Tesla            3000        6000          250
6      Audi            2000        1500          220

Displaying value name and counts from the column Car:
Mustang   2
Tesla     2
Audi      1
BMW       1
Mercedes  1
Name: Car, dtype: int64

Displaying value name and counts from the column Units Sold:
120   2
150   1
220   1
210   1
250   1
200   1
Name: Units Sold, dtype: int64