The shell sorting technique is based on the insertion sort. In the insertion sort sometimes we need to shift large block to insert an item in the correct location. Using shell sort, we can avoid a large number of shifting. The sorting is done with a specific interval. After each pass, the interval is reduced to make the smaller interval.
The complexity of the Shell Sort Technique
- Time Complexity: O(n log n) for best case, and for other cases, it depends on the gap sequence.
- Space Complexity: O(1)
Input and Output
Input: The unsorted list: 23 56 97 21 35 689 854 12 47 66 Output: Array before Sorting: 23 56 97 21 35 689 854 12 47 66 Array after Sorting: 12 21 23 35 47 56 66 97 689 854
Algorithm
shellSort(array, size)
Input − An array of data, and the total number in the array
Output − The sorted Array
Begin for gap := size / 2, when gap > 0 and gap is updated with gap / 2 do for j:= gap to size– 1 do for k := j-gap to 0, decrease by gap value do if array[k+gap] >= array[k] break else swap array[k + gap] with array[k] done done done End
Example
#include<iostream> using namespace std; void swapping(int &a, int &b) { //swap the content of a and b int temp; temp = a; a = b; b = temp; } void display(int *array, int size) { for(int i = 0; i<size; i++) cout << array[i] << " "; cout << endl; } void shellSort(int *arr, int n) { int gap, j, k; for(gap = n/2; gap > 0; gap = gap / 2) { //initially gap = n/2, decreasing by gap /2 for(j = gap; j<n; j++) { for(k = j-gap; k>=0; k -= gap) { if(arr[k+gap] >= arr[k]) break; else swapping(arr[k+gap], arr[k]); } } } } int main() { int n; cout << "Enter the number of elements: "; cin >> n; int arr[n]; //create an array with given number of elements cout << "Enter elements:" << endl; for(int i = 0; i<n; i++) { cin >> arr[i]; } cout << "Array before Sorting: "; display(arr, n); shellSort(arr, n); cout << "Array after Sorting: "; display(arr, n); }
Output
Enter the number of elements: 10 Enter elements: 23 56 97 21 35 689 854 12 47 66 Array before Sorting: 23 56 97 21 35 689 854 12 47 66 Array after Sorting: 12 21 23 35 47 56 66 97 689 854