The merge sort technique is based on divide and conquer technique. We divide the while data set into smaller parts and merge them into a larger piece in sorted order. It is also very effective for worst cases because this algorithm has lower time complexity for worst case also.
The complexity of Merge Sort Technique
Time Complexity: O(n log n) for all cases
Space Complexity: O(n)
Input − The unsorted list: 14 20 78 98 20 45 Output − Array after Sorting: 14 20 20 45 78 98
Algorithm
merge(array, left, middle, right)
Input: The data set array, left, middle and right index
Output: The merged list
Begin
nLeft := m - left+1
nRight := right – m
define arrays leftArr and rightArr of size nLeft and nRight respectively
for i := 0 to nLeft do
leftArr[i] := array[left +1]
done
for j := 0 to nRight do
rightArr[j] := array[middle + j +1]
done
i := 0, j := 0, k := left
while i < nLeft AND j < nRight do
if leftArr[i] <= rightArr[j] then
array[k] = leftArr[i]
i := i+1
else
array[k] = rightArr[j]
j := j+1
k := k+1
done
while i < nLeft do
array[k] := leftArr[i]
i := i+1
k := k+1
done
while j < nRight do
array[k] := rightArr[j]
j := j+1
k := k+1
done
EndmergeSort(array, left, right)
Input: An array of data, and lower and upper bound of the array
Output: The sorted Array
Begin
if lower < right then
mid := left + (right - left) /2
mergeSort(array, left, mid)
mergeSort (array, mid+1, right)
merge(array, left, mid, right)
EndExample Code
#include<iostream>
using namespace std;
void swapping(int &a, int &b) { //swap the content of a and b
int temp;
temp = a;
a = b;
b = temp;
}
void display(int *array, int size) {
for(int i = 0; i<size; i++)
cout << array[i] << " ";
cout << endl;
}
void merge(int *array, int l, int m, int r) {
int i, j, k, nl, nr;
//size of left and right sub-arrays
nl = m-l+1; nr = r-m;
int larr[nl], rarr[nr];
//fill left and right sub-arrays
for(i = 0; i<nl; i++)
larr[i] = array[l+i];
for(j = 0; j<nr; j++)
rarr[j] = array[m+1+j];
i = 0; j = 0; k = l;
//marge temp arrays to real array
while(i < nl && j<nr) {
if(larr[i] <= rarr[j]) {
array[k] = larr[i];
i++;
}else{
array[k] = rarr[j];
j++;
}
k++;
}
while(i<nl) { //extra element in left array
array[k] = larr[i];
i++; k++;
}
while(j<nr) { //extra element in right array
array[k] = rarr[j];
j++; k++;
}
}
void mergeSort(int *array, int l, int r) {
int m;
if(l < r) {
int m = l+(r-l)/2;
// Sort first and second arrays
mergeSort(array, l, m);
mergeSort(array, m+1, r);
merge(array, l, m, r);
}
}
int main() {
int n;
cout << "Enter the number of elements: ";
cin >> n;
int arr[n]; //create an array with given number of elements
cout << "Enter elements:" << endl;
for(int i = 0; i<n; i++) {
cin >> arr[i];
}
cout << "Array before Sorting: ";
display(arr, n);
mergeSort(arr, 0, n-1); //(n-1) for last index
cout << "Array after Sorting: ";
display(arr, n);
}Output
Enter the number of elements: 6 Enter elements: 14 20 78 98 20 45 Array before Sorting: 14 20 78 98 20 45 Array after Sorting: 14 20 20 45 78 98