Park-Miller Random Number Generation Algorithm is another method of generating random numbers.
A general formula of a random number generator (RNG) of this type is: X_{k+1} = g X(k) mod n
Where the modulus n is a prime number or a power of a prime number, the multiplier g is an element of high multiplicative order modulo n, and the seed X0 is coprime to n.
Algorithm
Begin
Declare variables n, a, b, c and seed
Read variables n, a, b, c and seed
Uniform()
Declare variable hi, lo, t
hi=seed divided by b
lo = seed - b * hi
t = a * lo - c * hi
if (t > 0)
seed = t;
else
seed = t + n;
return seed;
Done
For i =0 to n
Call the function random
Done
EndExample Code
#include <iostream>
using namespace std;
const long n = 2145678965L;
const long a = 763214L;
const long b = 88844L;
const long c = 7766L; i
static long seed = 12345678L;
double uniform() {
long hi = seed / b;
long lo = seed - b * hi;
long t = a * lo - c * hi;
if (t > 0)
seed = t;
else
seed = t + n;
return seed;
}
int main(int argc, char **argv) {
double A[10];
for (int i = 0; i < 10; i++)
A[i] = uniform();
cout << "Random numbers are:\n";
for (int i = 0; i < 10; i++)
cout << A[i] << endl;
}Output
Random numbers are: 6.50293e+10 4.27187e+10 2.1539e+10 4.62058e+10 1.70792e+10 8.24569e+09 5.93381e+10 3.63839e+10 4.81931e+10 8.91007e+09