This is a C++ Program which demonstrates the implementation of Euler Theorem. The number and modular must be coprime for the modular multiplicative inverse to exist.
Algorithm
Begin
Take input to find modular multiplicative inverse
Take input as modular value
Perform inverse array function:
modInverse(x + 1, 0);
modInverse[1] = 1;
for i = 2 to x
modInverse[i] = (-(y / i) * modInverse[y mod i]) mod y + y
return modInverse
EndExample Code
#include <iostream>
#include <vector>
using namespace std;
vector<int> inverseArray(int x, int y) {
vector<int> modInverse(x + 1, 0);
modInverse[1] = 1;
for (int i = 2; i <= x; i++) {
modInverse[i] = (-(y / i) * modInverse[y % i]) % y + y;
}
return modInverse;
}
int main() {
vector<int>::iterator it;
int a, m;
cout<<"Enter number to find modular multiplicative inverse: ";
cin>>a;
cout<<"Enter Modular Value: ";
cin>>m;
cout<<inverseArray(a, m)[a]<<endl;
}Output
Enter number to find modular multiplicative inverse: 26 Enter Modular Value: 7 7