The merge sort technique is based on divide and conquer technique. We divide the while data set into smaller parts and merge them into a larger piece in sorted order. It is also very effective for worst cases because this algorithm has lower time complexity for worst case also.
Linked list can be sorted using merge-sort very efficiently. For the linked list the merging task is very simple. We can simply update the links to merge them. In this section we will see how to sort the linked list using this approach.
The complexity of Merge Sort Technique
Time Complexity − O(n log n) for all cases
Space Complexity − O(n)
Input − The unsorted list: 14 20 78 98 20 45 Output − Array after Sorting: 14 20 20 45 78 98
Algorithm
mergeList(ll1, ll2)
Input − It takes two linked lists ll1 and ll2
Output − The merged list
Begin
if ll1 is empty, then
return ll2
if ll2 is empty, then
return ll1
if data(ll1) <= data(ll2), then
new_head = ll1;
next(new_head) = mergeList(next(ll1), ll2)
else
new_head = ll2;
next(new_head) = mergeList(ll1, next(ll2))
return new_head
Endsplit_list(start, ll1, ll2)
Input − The start pointer of a linked list, two output arguments ll1 and ll2
Output − Two linked list generated from the linked list
Begin
slow := start
fast := next(start)
while fast is not null, do
fast := next(fast)
if fast is not null, then
slow := next(slow)
fast := next(fast)
end while
ll1 := start
ll2 := next(slow)
next(slow) := null
EndmergeSort(start)
Input − The linked list
Output − Sorted linked list
Begin
head = start
if head is null or next(head) is null, then
return
split_list(head, ll1, ll2)
mergeSort(ll1)
mergeSort(ll2)
start := mergeList(ll1, ll2)
EndSource Code (C++)
#include<bits/stdc++.h>
using namespace std;
class node { //define node to store data and next address
public:
int data;
node *next;
};
void display(class node* start) {
node* p = start; // current node set to head
while(p != NULL) { //traverse until current node isn't NULL
cout << p -> data << " ";
p = p -> next; // go to next node
}
}
node* getNode(int d) {
node* temp = new node;
temp -> data = d;
temp -> next = NULL;
return temp;
}
node* mergeList(node* ll1, node* ll2) { //function for merging two sorted list
node* newhead = NULL;
if(ll1 == NULL)
return ll2;
if(ll2 == NULL)
return ll1;
//recursively merge the lists
if(ll1 -> data <= ll2 -> data) {
newhead = ll1;
newhead -> next = mergeList(ll1->next,ll2);
} else {
newhead = ll2;
newhead -> next = mergeList(ll1,ll2->next);
}
return newhead;
}
void splitList(node* start, node** ll1,node** ll2) {
//similar to flyod's tortoise algorithm
node* slow = start;
node* fast = start -> next;
while(fast!= NULL) {
fast = fast -> next;
if(fast!= NULL) {
slow = slow -> next;
fast = fast -> next;
}
}
*ll1 = start;
*ll2 = slow -> next;
//spliting
slow -> next = NULL;
}
void mergeSort(node** start) {
node* head = *start;
node* ll1,*ll2;
//base case
if(head == NULL || head->next == NULL) {
return;
}
splitList(head,&ll1,&ll2); //split the list in two halves
//sort left and right sublists
mergeSort(&ll1);
mergeSort(&ll2);
//merge two sorted list
*start = mergeList(ll1,ll2);
return;
}
int main() {
cout << "Creating the linked list: " << endl;
cout << "Enter 0 to stop building the list, else enter any integer" << endl;
int k,count = 1,x;
node* curr,*temp;
cin >> k;
node* head = getNode(k); //buliding list, first node
cin >> k;
temp = head;
while(k) {
curr = getNode(k);
temp -> next = curr;//appending each node
temp = temp -> next;
cin >> k;
}
cout<<"Before sorting: " << endl;
display(head); // displaying the list
cout<<"\nAfter sorting: " << endl;
mergeSort(&head);
display(head);
return 0;
}Output
Creating the linked list: Enter 0 to stop building the list, else enter any integer 89 54 15 64 74 98 10 24 26 0 Before sorting: 89 54 15 64 74 98 10 24 26 After sorting: 10 15 24 26 54 64 74 89 98