Convex hull is the minimum closed area which can cover all given data points.
Graham's Scan algorithm will find the corner points of the convex hull. In this algorithm, at first the lowest point is chosen. That point is the starting point of the convex hull. Remaining n-1 vertices are sorted based on the anti-clock wise direction from the start point. If two or more points are forming same angle, then remove all points of same angle except the farthest point from start.
From the remaining points, push them into the stack. And remove items from stack one by one, when orientation is not anti-clockwise for stack top point, second top point and newly selected point points[i], after checking, insert points[i] into the stack.
Input: Set of points: {(-7,8), (-4,6), (2,6), (6,4), (8,6), (7,-2), (4,-6), (8,-7),(0,0), (3,-2),(6,-10),(0,-6),(-9,-5),(-8,-2),(-8,0),(-10,3),(-2,2),(-10,4)}
Output: Boundary points of convex hull are: (-9, -5) (-10, 3) (-10, 4) (-7, 8) (8, 6) (8, -7) (6, -10)Algorithm
findConvexHull(points, n)
Input: The set of points, number of points.
Output: The boundary points of convex hull.
Begin
minY := points[0].y
min := 0
for i := 1 to n-1 do
y := points[i].y
if y < minY or minY = y and points[i].x < points[min].x, then
minY := points[i].y
min := i
done
swap points[0] and points[min]
p0 := points[0]
sort points from points[1] to end
arrSize := 1
for i := 1 to n, do
when i < n-1 and (p0, points[i], points[i+1]) are collinear, do
i := i + 1
done
points[arrSize] := points[i]
arrSize := arrSize + 1
done
if arrSize < 3, then
return cHullPoints
push points[0] into stack
push points[1] into stack
push points[2] into stack
for i := 3 to arrSize, do
while top of stack, item below the top and points[i] is not in
anticlockwise rotation, do
delete top element from stack
done
push points[i] into stack
done
while stack is not empty, do
item stack top element into cHullPoints
pop from stack
done
EndExample Code
#include<iostream>
#include<stack>
#include<algorithm>
#include<vector>
using namespace std;
struct point { //define points for 2d plane
int x, y;
};
point p0; //used to another two points
point secondTop(stack<point> &stk) {
point tempPoint = stk.top();
stk.pop();
point res = stk.top(); //get the second top element
stk.push(tempPoint); //push previous top again
return res;
}
int squaredDist(point p1, point p2) {
return ((p1.x-p2.x)*(p1.x-p2.x) + (p1.y-p2.y)*(p1.y-p2.y));
}
int direction(point a, point b, point c) {
int val = (b.y-a.y)*(c.x-b.x)-(b.x-a.x)*(c.y-b.y);
if (val == 0)
return 0; //colinear
else if(val < 0)
return 2; //anti-clockwise direction
return 1; //clockwise direction
}
int comp(const void *point1, const void*point2) {
point *p1 = (point*)point1;
point *p2 = (point*)point2;
int dir = direction(p0, *p1, *p2);
if(dir == 0)
return (squaredDist(p0, *p2) >= squaredDist(p0, *p1))?-1 : 1;
return (dir==2)? -1 : 1;
}
vector<point> findConvexHull(point points[], int n) {
vector<point> convexHullPoints;
int minY = points[0].y, min = 0;
for(int i = 1; i<n; i++) {
int y = points[i].y;
//find bottom most or left most point
if((y < minY) || (minY == y) && points[i].x < points[min].x) {
minY = points[i].y;
min = i;
}
}
swap(points[0], points[min]); //swap min point to 0th location
p0 = points[0];
qsort(&points[1], n-1, sizeof(point), comp); //sort points from 1 place to end
int arrSize = 1; //used to locate items in modified array
for(int i = 1; i<n; i++) {
//when the angle of ith and (i+1)th elements are same, remove points
while(i < n-1 && direction(p0, points[i], points[i+1]) == 0)
i++;
points[arrSize] = points[i];
arrSize++;
}
if(arrSize < 3)
return convexHullPoints; //there must be at least 3 points, return empty list.
//create a stack and add first three points in the stack
stack<point> stk;
stk.push(points[0]); stk.push(points[1]); stk.push(points[2]);
for(int i = 3; i<arrSize; i++) { //for remaining vertices
while(direction(secondTop(stk), stk.top(), points[i]) != 2)
stk.pop(); //when top, second top and ith point are not making left turn, remove point
stk.push(points[i]);
}
while(!stk.empty()) {
convexHullPoints.push_back(stk.top()); //add points from stack
stk.pop();
}
}
int main() {
point points[] = {{-7,8},{-4,6},{2,6},{6,4},{8,6},{7,-2},{4,-6},{8,-7},{0,0},
{3,-2},{6,-10},{0,-6},{-9,-5},{-8,-2},{-8,0},{-10,3},{-2,2},{-10,4}};
int n = 18;
vector<point> result;
result = findConvexHull(points, n);
cout << "Boundary points of convex hull are: "<<endl;
vector<point>::iterator it;
for(it = result.begin(); it!=result.end(); it++)
cout << "(" << it->x << ", " <<it->y <<") ";
}Output
Boundary points of convex hull are: (-9, -5) (-10, 3) (-10, 4) (-7, 8) (8, 6) (8, -7) (6, -10)