In this problem, we are given a number n. Our task is to create a program to find the sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + … + (1+2+3+4+...+n).
Lets example to understand the problem,
Input
n = 4
Output
20
Explanation −(1) + (1+2) + (1+2+3) + (1+2+3+4) = 20
A simple solution to the problem will be creating the series by using two loops.
Algorithm
Initialize sum = 0 Step 1: Loop for i -> 1 to n i.e i = 1 to i <= n. Step 1.1: Loop for j -> 1 to i i.e. i = 1 to i <= i. Step 1.1.1: update sum i.e. sum += j. Step 2: return sum.
Example
Program to illustrate the working of our solution,
#include <iostream>
using namespace std;
int calcSeriesSum(int n) {
int sum = 0;
for (int i = 1 ; i <= n ; i++)
for (int j = 1 ; j <= i ; j++)
sum += j;
return sum;
}
int main() {
int n = 7;
cout<<"Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+"<<n<<") is "<<calcSeriesSum(n);
return 0;
}Output
Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+7) is 84
But this approach is not effective.
An effective solution could be deriving the general formula for finding the sum of the series.
sum = 1 + (1+2) + (1+2+3) + (1+2+3+4) … sum = ∑ ( (1+2+3+4+5+...) ) sum = ∑ ( n(n+1)/2) sum = ½ ∑ ( n^2 + n) = ½ (∑ (n2) + ∑ n) sum = ½ [ (n(n+1)(2n+1))/6 ) + ½ ( n(n+1)/2 ] sum = ½ [ (n(n+1))/2 ( (2n+1)/3 + 1) ] sum = ½ [ ((n(n+1))/2) * (2n + 1 + 3)/3 ] sum = ½ [ (n(n+1)(2n+4))/6] sum = (n(n + 1)(2n + 4))/6
Example
Program to illustrate the working of our solution,
#include <iostream>
using namespace std;
int calcSeriesSum(int n) {
return (n*(n + 1)*(2*n + 4))/12;
}
int main() {
int n = 7;
cout<<"Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+"<<n<<") is "<<calcSeriesSum(n);
}Output
Sum of the series 1 + (1+2) + (1+2+3) + (1+2+3+4) + ... + (1+2+3+4+...+7) is 84