Suppose we have a list of coordinates where each element is of the form [x, y], representing Euclidean coordinates. We have to find the smallest squared distance (x1 - x2) 2 + (y1 - y2) 2 between any two provided coordinates.
So, if the input is like coordinates = {{1, 2},{1, 4},{3, 5}}, then the output will be 4.
To solve this, we will follow these steps −
Define one map ytorightmostx
sort the array coordinates
ret := infinity
for each p in cordinates −
it = return the value where (p[1] - sqrt(ret)) is in ytorightmostx or the smallest value greater than it from ytorightmostx
while it is not equal to last element of ytorightmostx, do −
yd := first - p[1] of it
if yd > 0 and yd * yd >= ret, then −
Come out from the loop
nxt = it
increase nxt by 1
ret := minimum of (ret, dist(p[0], p[1], first value of it, second value of it)
xd := second value of it - p[0]
if xd * xd >= ret, then −
delete it from ytorightmostx
it := nxt
ytorightmostx[p[1]] := p[0]
return ret
Define a function dist(), this will take xl, yl, xr, yr.
xd := xl - xr
yd := yl - yr
return xd * xd + yd * yd
Example
Let us see the following implementation to get a better understanding −
#include <bits/stdc++.h>
using namespace std;
long long dist(long long xl, long long yl, long long xr, long long yr) {
long long xd = xl - xr;
long long yd = yl - yr;
return xd * xd + yd * yd;
}
int solve(vector<vector<int>>& coordinates) {
map<long long, long long> ytorightmostx;
sort(coordinates.begin(), coordinates.end());
long long ret = 1e18;
for (auto& p : coordinates) {
auto it = ytorightmostx.lower_bound(p[1] - sqrt(ret));
while (it != ytorightmostx.end()) {
long long yd = it->first - p[1];
if (yd > 0 && yd * yd >= ret) {
break;
}
auto nxt = it;
nxt++;
ret = min(ret, dist(p[0], p[1], it->second, it->first));
long long xd = (it->second - p[0]);
if (xd * xd >= ret) {
ytorightmostx.erase(it);
}
it = nxt;
}
ytorightmostx[p[1]] = p[0];
}
return ret;
}
int main(){
vector<vector<int>> coord = {{1, 2},{1, 4},{3, 5}};
cout << solve(coord) << endl;
return 0;
}Input
{{1, 2},{1, 4},{3, 5}}Output
4