In this tutorial, we are going to write a program that finds the k-th largest element from the max-heap.
We will use priority queue to solve the problem. Let's see the steps to complete the program.
- Initialise the max-heap with correct values.
- Create a priority queue and insert the root node of the max-heap.
- Write a loop that iterates k - 1 times.
- Pop the greatest element from the queue.
- Add the left and right nodes of the above node into the priority queue.
- The greatest element in priority queue is the k-th greatest element now.
- Return it.
Example
Let's see the code.
#include <bits/stdc++.h>
using namespace std;
struct Heap {
vector<int> elemets;
int n;
Heap(int i = 0): n(i) {
elemets = vector<int>(n);
}
};
inline int leftIndex(int i) {
return 2 * i + 1;
}
inline int rightIndex(int i) {
return 2 * i + 2;
}
int findKthGreatestElement(Heap &heap, int k) {
priority_queue<pair<int, int>> queue;
queue.push(make_pair(heap.elemets[0], 0));
for (int i = 0; i < k - 1; ++i) {
int node = queue.top().second;
queue.pop();
int left = leftIndex(node), right = rightIndex(node);
if (left < heap.n) {
queue.push(make_pair(heap.elemets[left], left));
}
if (right < heap.n) {
queue.push(make_pair(heap.elemets[right], right));
}
}
return queue.top().first;
}
int main() {
Heap heap(10);
heap.elemets = vector<int>{ 44, 42, 35, 33, 31, 19, 27, 10, 26, 14 };
cout << findKthGreatestElement(heap, 4) << endl;
return 0;
}Output
If you run the above code, then you will get the following result.
33
Conclusion
If you have any queries in the tutorial, mention them in the comment section.