Here we will see how we can find the absolute difference between the sum of all prime numbers and all non-prime numbers of an array. To solve this problem, we have to check whether a number is prime or not. One possible way for primality testing is by checking a number is not divisible by any number between 2 to square root of that number. So this process will take 𝑂(√𝑛) amount of time. Then get the sum and try to find the absolute difference.
Algorithm
diffPrimeNonPrimeSum(arr)
begin sum_p := sum of all prime numbers in arr sum_np := sum of all non-prime numbers in arr return |sum_p – sum_np| end
Example
#include <iostream> #include <cmath> using namespace std; bool isPrime(int n){ for(int i = 2; i<=sqrt(n); i++){ if(n % i == 0){ return false; //not prime } } return true; //prime } int diffPrimeNonPrimeSum(int arr[], int n) { int sum_p = 0, sum_np = 0; for(int i = 0; i<n; i++){ if(isPrime(arr[i])){ sum_p += arr[i]; } else { sum_np += arr[i]; } } return abs(sum_p - sum_np); } main() { int arr[] = { 5, 8, 9, 6, 21, 27, 3, 13}; int n = sizeof(arr) / sizeof(arr[0]); cout << "Difference: " << diffPrimeNonPrimeSum(arr, n); }
Output
Difference: 50