Here we will see the extended Euclidean algorithm implemented using C. The extended Euclidean algorithm is also used to get the GCD. This finds integer coefficients of x and y like below −
𝑎𝑥+𝑏𝑦 = gcd(𝑎,𝑏)
Here in this algorithm it updates the value of gcd(a, b) using the recursive call like this − gcd(b mod a, a). Let us see the algorithm to get the idea
Algorithm
EuclideanExtended(a, b, x, y)
begin if a is 0, then x := 0 y := 1 return b end if gcd := EuclideanExtended(b mod a, a, x1, y1) x := y1 – (b/a)*x1 y := x1 return gcd end
Example
#include <stdio.h> int EuclideanExtended(int a, int b, int* x, int* y) { if (a == 0) { *x = 0; *y = 1; return b; } int xtemp, ytemp; // To store results of recursive call int res = EuclideanExtended(b % a, a, &xtemp, &ytemp); *x = ytemp - (b / a) * xtemp; *y = xtemp; return res; } int main() { int x, y; int a = 60, b = 25; int res = EuclideanExtended(a, b, &x, &y); printf("gcd(%d, %d) = %d", a, b, res); }
Output
gcd(60, 25) = 5