Given with the matrix of n x n the task is to print that matrix of n x n in lower triangular pattern.
Lower triangular matrix is a matrix which has elements below the principle diagonal including the principle diagonal elements and rest elements as zero.
Let’s understand this with help of a diagram −

Above the elements in green are the elements below the principle diagonal and the red elements are the elements above the principle diagonal which are set as zero.
Example
Input: matrix[3][3] = {
{ 1, 2, 3 },
{ 4, 5, 6 },
{ 7, 8, 9 } }
Output:
1 0 0
4 5 0
7 8 9Algorithm
int lower_mat(int mat[n][m]) START STEP 1: DECLARE I AND j STEP 2 : LOOP FOR i = 0 AND i < n AND i++ LOOP FOR j = 0 AND j < m AND j++ IF i < j THEN, PRINT "0\t" ELSE PRINT mat[i][j] END IF END FOR PRINT newline END FOR STOP
Example
#include <stdio.h>
#define n 3
#define m 3
int lower_mat(int mat[n][m]){
int i, j;
for ( i = 0; i < n; i++){
for ( j = 0; j < m; j++){
if( i < j )
printf("0\t");
else
printf("%d\t", mat[i][j]);
}
printf("\n");
}
}
int main(int argc, char const *argv[]){
int mat[n][m] = {
{1, 2, 3},
{4, 5, 6},
{7, 8, 9}
};
lower_mat(mat);
return 0;
}Output
If we run above program then it will generate following output −
1 0 0 4 5 0 7 8 9