In this problem, we are given a sequence( array) of metrics. our task is to create a C program for Matrix chain multiplication. We need to find a way to multiply these matrixes so that, the minimum number of multiplications is required.
The array of matrices will contain n elements, which define the dimensions of the matrices as, arr[i-1] X arr[i].
Let’s take an example to understand the problem,
Input
array[] = {3, 4, 5, 6}
Output
Explanation
the matrices will be of the order −
Mat1 = 3X4, Mat2 = 4X5, Mat3 = 5X6
For these three matrices, there can be two ways to multiply,
mat1*(mat2*mat3) -> (3*4*6) + (4*5*6) = 72 + 120 = 192 (mat1*mat2)*mat3 -> (3*4*5) + (3*5*6) = 60 + 90 = 150
The minimum number of mulitplications will be 150 in case of (mat1*mat2)*mat3.
The problem can be solved using dynamic programming as it posses both the properties i.e. optimal substructure and overlapping substructure in dynamic programming.
So here is C Program for Matrix Chain Multiplication using dynamic programming
Example
#include <stdio.h> int MatrixChainMultuplication(int arr[], int n) { int minMul[n][n]; int j, q; for (int i = 1; i < n; i++) minMul[i][i] = 0; for (int L = 2; L < n; L++) { for (int i = 1; i < n - L + 1; i++) { j = i + L - 1; minMul[i][j] = 99999999; for (int k = i; k <= j - 1; k++) { q = minMul[i][k] + minMul[k + 1][j] + arr[i - 1] * arr[k] * arr[j]; if (q < minMul[i][j]) minMul[i][j] = q; } } } return minMul[1][n - 1]; } int main(){ int arr[] = {3, 4, 5, 6, 7, 8}; int size = sizeof(arr) / sizeof(arr[0]); printf("Minimum number of multiplications required for the matrices multiplication is %d ", MatrixChainMultuplication(arr, size)); getchar(); return 0; }
Output
Minimum number of multiplications required for the matrices multiplication is 444