MapReduceとは? わかりやすく解説

Weblio 辞書 > 辞書・百科事典 > 百科事典 > MapReduceの意味・解説 

MapReduce

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2018/09/06 02:53 UTC 版)

Jump to navigation Jump to search

MapReduce(マップリデュース)は、コンピュータ機器のクラスター上での巨大なデータセットに対する分散コンピューティングを支援する目的で、Googleによって2004年に導入されたプログラミングモデルである。

このフレームワーク関数型言語でよく使われるMap関数とReduce関数からヒントを得て作られているが、フレームワークにおけるそれらの用いられ方は元々のものと同じではない。

MapReduceのライブラリ群は、C++C#ErlangJavaOCamlPerlPythonPHPRubyF#R言語MATLAB等のプログラミング言語で実装されている。

概要

MapReduceは巨大なデータセットを持つ高度に並列可能な問題に対して、多数のコンピュータ(ノード)の集合であるクラスター(各ノードが同じハードウェア構成を持つ場合)もしくはグリッド(各ノードが違うハードウェア構成を持つ場合)を用いて並列処理させるためのフレームワークである。処理は、ファイルシステム(非構造的)もしくはデータベース(構造的)に格納されたデータに対して行うことができる。

Map ステップ - マスターノードは、入力データを受け取り、それをより細かい単位に分割し、複数のワーカーノードに配置する。受け取ったワーカーノードが、更に細かい単位に分割し、他の複数のワーカーノードに配置するという、より深い階層構造の分割を行うこともある。そして、各ワーカーノードは、その細かい単位のデータを処理し、処理結果を、マスターノードへと返す。

Reduce ステップ - 続いて、マスターノードが、Mapステップでの処理結果を集約し、目的としていた問題に対する答え(結果)を何らかの方法によって出力する。

MapReduceの特徴は、MapとReduceの各ステップで並列処理が可能なことである。それぞれのMap処理は、他のMap処理と完全独立であり、理論的に全て並列実行することができる(実際には、データソースやCPUの数により制限がかかる)。続くReduceステップでは、Mapステップでの処理結果がキーごとにまとめられてReduce処理に送られることになるが、これも同様に並列処理が可能である。

MapReduce による一連の処理は、逐次実行アルゴリズムと比較してしばしば非効率にみえるが、MapReduce は一般の汎用サーバが取り扱うことが可能なデータ量をはるかに超える大きなデータセットに対しても適用することができる。多数のサーバを持っていれば、MapReduce を使いペタバイト級のデータの並べ替えをわずか数時間で行うことも可能である。

また、処理が並列的であることで、複数あるサーバやストレージの一部に障害が起こり、Map処理やReduce処理が実行できないノードが発生した場合でも、入力データがまだ利用可能である場合は、処理を再スケジュールして実行させることが可能となる。これにより、障害に対して、しばしば処理継続中のリカバリーが可能になる。

参考文献

  • 日経BP出版局著 「クラウド大全 サービス詳細から基盤技術まで」2009年 ISBN 9784822283889

関連事項




英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

すべての辞書の索引

「MapReduce」の関連用語

MapReduceのお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



MapReduceのページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアのMapReduce (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。

©2025 GRAS Group, Inc.RSS