表現論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/02/16 13:55 UTC 版)
原文と比べた結果、この記事には多数の(または内容の大部分に影響ある)誤訳があることが判明しています。情報の利用には注意してください。 |
表現論(ひょうげんろん、英: representation theory)とは、ベクトル空間の線型変換として代数構造を表現することで代数構造上の加群を研究する数学の一分野である[1]。本質的には、表現は抽象的な代数的構造を、その元と演算を行列と行列の和や行列の積で記述することで、より具体的にする。この記述で扱われる代数的対象には、群や結合代数やリー代数がある。これらの中で最も優れているものは、歴史的にも最初に現れた群の表現論であり、群の演算が行列の積で、群の要素が正則行列で表現されている[2]。
表現論は、抽象代数学の問題を良く理解されている線型代数の問題へと帰着させるので、強力なツールである[3]。さらに、群が表現されているベクトル空間が無限次元になることやヒルベルト空間になることも可能であり、その場合、函数解析の方法が群の理論へ適用可能となる[4]。表現論は物理学でも重要であり、例えば、物理系の対称群が、どのように物理系を記述する方程式の解へ影響するかを記述する[5]。
表現論の著しい特徴は、数学での広がりにある。そこには、2つの面がある。ひとつの面は、表現論の応用が多岐にわたっていることであり[6]、表現論は代数への影響のみならず、以下のような応用も持っている。
- 調和解析を通してフーリエ解析を広く一般化する[7]
- 不変式論とエルランゲン・プログラムを通して深く幾何学とつながっている[8]。
- さらに、数論へは保型形式やラングランズ・プログラムを通して深く影響を持っている[9]。
もうひとつの面は、表現論へのアプローチの広がりである。同じ対象が代数幾何学、加群の理論、解析的整数論、微分幾何学、作用素理論、代数的組み合わせ論(algebraic combinatorics)、トポロジーの方法で研究できる[10]。
表現論の成功は、多くの一般化を生み出した。その一般的な理論は圏論の中にある[11]。適用する代数的対象を特別な圏として、対象のなす圏からベクトル空間の圏(category of vector spaces)への函手を表現とみなすことができる。この記述には 2つの明白な一般化がある。ひとつは代数的対象をより一般的な圏により置き換えることが可能であり、第二には、ベクトル空間のなす圏を別の良く知られた圏に置き換えることが可能である。
定義と概念
V を体 F 上のベクトル空間とする[3]。例えば、V が Rn や Cn のときは、それぞれ、実数や複素数上の列ベクトルの標準的な n-次元空間である。この場合、表現論の考え方は、抽象的な代数構造を実数や複素数の n × n 行列を使って具体化することである。
このことが可能な主要な代数的対象は 3種類あり、群, 結合代数、リー代数である[12]。
- n × n の正則行列(可逆行列)全体は、行列の積の下に群をなし、群の表現論は、群の元を正則行列として「表現」することにより(群自体を)調べることができる。
- 行列の和と積は、すべての n × n の行列の集合を結合代数とし、したがって、対応する結合代数の表現論(representation theory of associative algebras)が存在する。
- 行列の積 MN を行列の交換子 MN − NM に置き換えると、n × n の行列のリー代数となるので、リー代数の表現論が導かれる。
実数体や複素数体の場合は、任意の体 F と F 上の任意のベクトル空間へ拡張され、行列を線形写像で置き換え、行列の積を写像の合成で置き換える。V の自己同型と群 GL(V,F) へ一般化し、また、V のすべての自己準同型の結合代数 EndF(V) と対応するリー代数 gl(V,F) へ一般化される。
定義
表現の定義には 2つの方法がある[13]。表現を定義する第一の方法は、群の作用の考えを使い、行列の積により列ベクトル上へ行列を作用させる方法を一般化したものであり、ベクトル空間 V 上の群 G や結合代数やリー代数 A の表現は、次の 2つの性質((i), (ii))を満たす写像
表現論
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/02/27 08:10 UTC 版)
簡約群が重要である理由のひとつは表現論に由来する。べき単群が持つ任意の既約表現は自明である。より一般に、線型代数群 G をべき単群 U の簡約群 R による拡大 1 → U → G → R → 1 {\displaystyle 1\to U\to G\to R\to 1} として書いたとき、G が持つ任意の既約表現は R を経由 factors through する。この事実は焦点を簡約群の表現論へと絞り込む。(ここで言う表現とは、G の〈代数群としての〉表現である。したがって、体 k 上の群 G に関して、表現とは k ベクトル空間であり、G の作用は正則関数で与えられている。それは重要である一方、実簡約群 G に対して群 G(R) の連続表現を分類する問題〔あるいは他の体上における類似〕とは異なる。) シュヴァレーは体 k 上の分裂簡約群が持つ既約表現は有限次元であり、支配的ウェイト(英語版)により径数付けられることを示した。これはコンパクト連結リー群の表現論や複素半単純リー代数の表現論で起きていたことと同様である。標数がゼロである k に関して、これらの理論は本質的には等価である。特に、標数ゼロの体上の簡約群 G が持つ任意の表現は既約表現の直和であり、G が分裂しているならば、既約表現の指標はワイルの指標公式により与えられる。ボレル=ヴェイユの定理は標数ゼロのとき簡約群 G が持つ既約表現の幾何学的構成を旗多様体 G/B 上の直線束の切断の空間として与える。 正標数 p の体上における(トーラスでない)簡約群の表現論はよく理解されているわけではない。この状況では、表現が既約表現の直和であるとは限らない。さらに、既約表現は支配的ウェイトで径数付けられるものの、その次元や指標は限られた場合にしか知られていない。Andersen, Jantzen & Soergel (1994) は群のコクセター数(英語版)に対して標数 p が十分大きいときに(ルスティック予想を証明することで)これらの指標を決定した。小さな素数 p に対しては、未だ明瞭な予想すら存在しない。
※この「表現論」の解説は、「線型代数群」の解説の一部です。
「表現論」を含む「線型代数群」の記事については、「線型代数群」の概要を参照ください。
固有名詞の分類
- 表現論のページへのリンク