さいてきか‐もんだい〔サイテキクワ‐〕【最適化問題】
最適化問題
【英】:optimization problem
概要
「与えられた制約条件の下で目的を最適に達成するための数理モデル」で数理計画問題(mathematical programming problem)ともいう. 数学的には,
あるいは, | |
と表現される. ここで, は 次元ベクトル空間 の部分集合(実行可能集合)で, は で定義された実数値関数(目的関数).
詳説
最適化問題 (optimization problem)(数理計画問題)は, 「与えられた制約条件の下でより良い目的を達成するための数理モデル」で, 数学的には,
あるいは, |
のように表現される. ここで, は 次元ベクトル空間 の部分集合で実行可能集合(feasible region)(許容集合)と呼ばれ, は で定義された実数値関数で目的関数(objective function)と呼ばれる. また, を実行可能解(許容解), 実行可能解の中で目的関数の最大(あるいは, 最小)を達成するを最適解(optimal solution)と呼ぶ. 実行可能集合 は,
のように表現されることが多い. ただし, は で定義された実数値関数である. また, は対象とする最適化問題を記述するのに用いられる基礎となる空間と考えればよい. 基礎となる空間 , 実行可能領域 を表現するのに使われる関数 および, 目的関数 に種々の条件を課した多くのクラスの最適化問題が研究されている. 最適化問題は,
が仮定され, 変数ベクトル が連続的な値をとる連続最適化問題(continuous optimization problem)と,
が仮定され, 変数ベクトル が離散的な値をとる離散最適化問題(discrete optimization problem)に, 大きく分けることができる. 関数 に連続性(あるいは, 微分可能性)のみを仮定する非線形離散最適化問題のクラスも考えることができるが, そのような問題は非常に難しく, 関数 が線形(あるいは, 高々2次)関数である場合に限定することが多い. このように限定したとしても, 離散最適化問題には広範な応用がある. 個々の最適化問題は, それが定式化された元の(現実)問題と結びつけた名前で呼ばれることも多い. たとえば, 最小費用フロー問題, 最大フロー問題, 巡回セールスマン問題, グラフ分割問題等である. また, 上記の最適化問題に関する分類は厳密ではなく, 連続最適化と離散最適化の両方の特徴を共有する問題(たとえば, 施設配置問題, 線形混合整数計画問題)や, それらからはみ出た最適化問題も存在する.
最適化問題
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/31 08:43 UTC 版)
最適化問題(さいてきかもんだい、英: optimization problem)とは、特定の集合上で定義された実数値関数または整数値関数についてその値が最小(もしくは最大)となる状態を解析する問題である[1]。こうした問題は総称して数理計画問題(すうりけいかくもんだい、英: mathematical programming problem, mathematical program)、数理計画とも呼ばれる[1]。最適化問題は、自然科学、工学、社会科学などの多種多様な分野で発生する基本的な問題の一つであり、その歴史は18世紀の変分問題に遡る[2]。1940年代に線型計画法が登場して以来、理論的な研究や数値解法の研究が非常に活発に行われ、その応用範囲はいろいろな分野に拡大されていった[1]。実世界の現象の数理的な解析に関わる問題や抽象的な理論の多くをこの最適化問題という一般的なくくりに入れることができる。物理学やコンピュータビジョンにおける最適化問題は、考えている関数をモデル化された系のエネルギーを表すものと見なすことによって、エネルギー最小化問題と呼ばれることもある。
定義
最適化問題を数学的に記述すると、最小化問題の場合
- 与えられた関数
Optimization computes maxima and minima.
一般 |
|
---|---|
微分可能 |
|
凸縮小化 |
| ||||
---|---|---|---|---|---|
線型 および 二次 |
|
系列範例 (Paradigms) | |||||
---|---|---|---|---|---|
グラフ理論 |
|