微分方程式とは? わかりやすく解説

Weblio 辞書 > 同じ種類の言葉 > 人文 > 関数 > 方程式 > 微分方程式の意味・解説 

びぶん‐ほうていしき〔‐ハウテイシキ〕【微分方程式】

読み方:びぶんほうていしき

変数とその関数との関係を導関数を含む形で表した方程式独立変数一つ常微分方程式二つ上の偏微分方程式がある。


微分方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2024/12/26 18:59 UTC 版)

解析学において、微分方程式びぶんほうていしき: differential equation)とは、未知関数とその導関数の関係式として書かれている関数方程式である[1]

数学の応用分野においてしばしば、異なる2つの変数の関係を調べることが行われる。2変数を対応付ける関数があらわになっていなくても、その導関数(の満たすべき方程式)を適当な仮定の下で定めることができ、そこから目的とする関数を探し出すことができる。

物理法則を記述する基礎方程式は、多くが時間微分、空間微分を含む微分方程式であり、物理学からの要請もあり微分方程式の解法には多くの関心が注がれてきた。

方程式論は解析学の中心的な分野で、フーリエ変換ラプラス変換等は元々、微分方程式を解くために開発された手法である。また物理学における微分方程式の主要な問題は境界値問題固有値問題である[1]

微分方程式は大きく線型微分方程式と非線型微分方程式に分類される。線形微分方程式の例として、例えばシュレーディンガー方程式が挙げられる。シュレーディンガー方程式は、量子系の状態の時間発展を記述する方法の一つとして広く用いられている。非線型微分方程式の例として、例えばナビエ–ストークス方程式(NS方程式)が挙げられる。NS方程式は流体の運動を記述する基本方程式であり、物理学の応用としても重要な方程式である。しかし、NS方程式の解の存在性は未解決問題でありミレニアム懸賞問題にも選ばれている。

概要

微分方程式は方程式に含まれる導関数階数[注釈 1]によって分類され、最も高い階数が n 次である場合、その微分方程式を n 階微分方程式[注釈 2]と呼ぶ[1]

いずれの場合も未知関数は一つとは限らず、また、連立する複数の微分方程式を同時に満たす関数を解とするような連立方程式の形を取る場合もある[1]。これは連立 n 階微分方程式などと呼ばれる。

常微分方程式と偏微分方程式

一変数関数の導関数の関係式で書かれる常微分方程式と多変数関数の偏導関数を含む関係式で書かれる偏微分方程式に分かれる[1]

常微分方程式とは例えば、

外部リンク


ウィキペディアウィキペディア

微分方程式

出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2021/11/30 23:37 UTC 版)

数値解析」の記事における「微分方程式」の解説

詳細は「常微分方程式の数値解法」および「偏微分方程式の数値解法」を参照 数値解析では、微分方程式(常微分方程式偏微分方程式)を(近似的に)解く問題も扱う。 偏微分方程式を解くには、まず方程式離散化し、有限次元部分空間計算を行う。そのような手法として、有限要素法差分法、特に工学分野使われる有限体積法などを挙げることができる。これらの手法は関数解析学定理などに基づいている。これら各種離散化近似手法により生じた有限自由度連立代数関係式何らかの手段で解くことで、求めたい微分方程式の解近似を得る。

※この「微分方程式」の解説は、「数値解析」の解説の一部です。
「微分方程式」を含む「数値解析」の記事については、「数値解析」の概要を参照ください。

ウィキペディア小見出し辞書の「微分方程式」の項目はプログラムで機械的に意味や本文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。 お問い合わせ

出典:Wiktionary

微分方程式

出典:『Wiktionary』 (2021/11/25 00:20 UTC 版)

名詞

微分方程式びぶんほうていしき

  1. 未知関数とその導関数からなる方程式

派生語

翻訳


辞典・百科事典の検索サービス - Weblio辞書辞典・百科事典の検索サービス - Weblio辞書

「微分方程式」の例文・使い方・用例・文例

Weblio日本語例文用例辞書はプログラムで機械的に例文を生成しているため、不適切な項目が含まれていることもあります。ご了承くださいませ。



微分方程式と同じ種類の言葉


英和和英テキスト翻訳>> Weblio翻訳
英語⇒日本語日本語⇒英語
  

辞書ショートカット

カテゴリ一覧

すべての辞書の索引



Weblioのサービス

「微分方程式」の関連用語



3
偏微分方程式 デジタル大辞泉
100% |||||

4
100% |||||

5
関数方程式 デジタル大辞泉
100% |||||






微分方程式のお隣キーワード
検索ランキング

   

英語⇒日本語
日本語⇒英語
   



微分方程式のページの著作権
Weblio 辞書 情報提供元は 参加元一覧 にて確認できます。

   
デジタル大辞泉デジタル大辞泉
(C)Shogakukan Inc.
株式会社 小学館
ウィキペディアウィキペディア
All text is available under the terms of the GNU Free Documentation License.
この記事は、ウィキペディアの微分方程式 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。 Weblio辞書に掲載されているウィキペディアの記事も、全てGNU Free Documentation Licenseの元に提供されております。
ウィキペディアウィキペディア
Text is available under GNU Free Documentation License (GFDL).
Weblio辞書に掲載されている「ウィキペディア小見出し辞書」の記事は、Wikipediaの数値解析 (改訂履歴)、超準解析 (改訂履歴)、ガンマ関数 (改訂履歴)、時定数 (改訂履歴)、線型性 (改訂履歴)、ヴァイエルシュトラスの楕円函数 (改訂履歴)、グリーン関数 (改訂履歴)の記事を複製、再配布したものにあたり、GNU Free Documentation Licenseというライセンスの下で提供されています。
Text is available under Creative Commons Attribution-ShareAlike (CC-BY-SA) and/or GNU Free Documentation License (GFDL).
Weblioに掲載されている「Wiktionary日本語版(日本語カテゴリ)」の記事は、Wiktionaryの微分方程式 (改訂履歴)の記事を複製、再配布したものにあたり、Creative Commons Attribution-ShareAlike (CC-BY-SA)もしくはGNU Free Documentation Licenseというライセンスの下で提供されています。
Tanaka Corpusのコンテンツは、特に明示されている場合を除いて、次のライセンスに従います:
 Creative Commons Attribution (CC-BY) 2.0 France.
この対訳データはCreative Commons Attribution 3.0 Unportedでライセンスされています。
浜島書店 Catch a Wave
Copyright © 1995-2025 Hamajima Shoten, Publishers. All rights reserved.
株式会社ベネッセコーポレーション株式会社ベネッセコーポレーション
Copyright © Benesse Holdings, Inc. All rights reserved.
研究社研究社
Copyright (c) 1995-2025 Kenkyusha Co., Ltd. All rights reserved.
日本語WordNet日本語WordNet
日本語ワードネット1.1版 (C) 情報通信研究機構, 2009-2010 License All rights reserved.
WordNet 3.0 Copyright 2006 by Princeton University. All rights reserved. License
日外アソシエーツ株式会社日外アソシエーツ株式会社
Copyright (C) 1994- Nichigai Associates, Inc., All rights reserved.
「斎藤和英大辞典」斎藤秀三郎著、日外アソシエーツ辞書編集部編
EDRDGEDRDG
This page uses the JMdict dictionary files. These files are the property of the Electronic Dictionary Research and Development Group, and are used in conformance with the Group's licence.

©2025 GRAS Group, Inc.RSS