回文数
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/12/25 04:02 UTC 版)
回文数(かいぶんすう、Palindromic number)とは、なんらかの位取り記数法(N進法)で数を記した際、たとえば十進法において14641のように逆から数字を並べても同じ数になる数である。同様の言葉遊びである回文にちなむ名前である。具体的には
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191,…(オンライン整数列大辞典の数列 A002113)
である。
回文数は、趣味の数学の分野ではよく研究の対象になる。代表的なものとしては、ある性質を持った回文数を求めることがある。以下のようなものがよく知られている。
バックミンスター・フラーは著書の中で、回文数を「シャハラザード数」とも呼んでいる。これは、『1001夜物語』(1001も回文数である)のヒロインの名にちなんでいる。
定義
任意の整数 n > 0 は、b 進法(ただし、b ≧ 2)の位取り記数法により k + 1 桁の数字として以下の式で一意的に表すことができる。
- 回文
- ぞろ目
- レピュニット
- 西山豊「数学を楽しむ/回分数と196」『理系への数学』2006年10月号, Vol.39, No.10, 58-61. - Lychrel numberについての記事