位取り記数法
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2025/01/03 19:40 UTC 版)
現在、リダイレクト削除の方針に従ってこのページに関連するリダイレクトを削除することが審議されています。 議論は、リダイレクトの削除依頼で行われています。 対象リダイレクト:進対法(受付依頼)、進対法文化(受付依頼) |
この記事は検証可能な参考文献や出典が全く示されていないか、不十分です。(2020年2月) |
数字ないし決まった文字数の数字列の置かれた位置を
一つの桁を N 種の数字列の組み合わせで表す位取り記数法を
位取り記数法は古代中国に由来する。中国では紀元前14世紀の商時代にすでに十進法が用いられており、紀元前4世紀にはゼロを空位として記述する位取り記数法を用いていた。対してヨーロッパにおける最古の十進法が記述された文書は976年のスペインの手稿本である[3]。
本項では N が 2 以上の整数の場合を扱う。それ以外の場合については広義の記数法の記事を参照のこと。また後述するp 進数の概念とは(関連があるものの)別概念であるので注意が必要である。
記法
2 以上の整数 N を底(基数)とする位取り記数法(N 進法)において、それぞれの位の値は 0 から N − 1 までの N 個の非負の整数に対応した数字で表される(例:1234567890、一二三四五六七八九〇)[4][5]。 非負の数は位取り記数法によって、以下のように表される[5]:
- 総合
- 広義の記数法
- コンピュータの数値表現、エンディアン
- 命数法
- キリバン
- 倍数接頭辞:英語で記数法の底となるNを表すdecimal(十進法)、binary(二進法)などの接頭辞deci-、bi-などに関する項目
- 通常のN進法
- 二進法 (binary)
- 三進法 (ternary)
- 四進法 (quaternary)
- 五進法 (quinary)
- 六進法 (senary)
- 七進法 (septenary)
- 八進法 (octal)
- 九進法 (nonary)
- 十進法 (decimal)
- 十一進法 (undecimal)
- 十二進法 (duodecimal, dozenal)
- 十三進法 (tridecimal)
- 十五進法 (quindecimal)
- 十六進法 (hexadecimal)
- 十八進法 (octodecimal)
- 二十進法 (vigesimal)
- 二十四進法
- 三十進法 (trigesimal)
- 三十二進法
- 三十六進法
- 六十進法 (sexagesimal)
- 特殊なN進法
- 一進法(桁上がりが無い)
- 二・五進法(にごしんほう、二十五進法ではない。桁上がりが複数段階)
- 二進化十進表現
- 六十進法:sexagesimal(桁上がりが複数段階)
- E進法
- 黄金進法
- 六十四進法:Base64
- 八十五進法:Ascii85
- 階乗進法
- 平衡三進法
- 全単射進法(英語: Bijective numeration)
- 負数進法(英語: Negative base)
- 2i進法(英語: Quater-imaginary base)
- その他