アンサンブル・ラーニング
出典: フリー百科事典『ウィキペディア(Wikipedia)』 (2023/11/30 09:06 UTC 版)
機械学習および データマイニング |
---|
Category:データマイニング |
アンサンブル・ラーニングはアンサンブル・メソッドを用いた機械学習である。統計や機械学習で使われるアンサンブル・メソッドでは、さまざまな学習アルゴリズムの有限集合を使用することで、単一の学習アルゴリズムよりも優れた結果を得る [1]。一連のアルゴリズムの計算は、単一のアルゴリズムの計算よりも時間がかかるが、より浅い計算深度で、ほぼ同等の良好な結果を得ることができる。
アンサンブル・ラーニングの重要な応用領域は、決定木である。大きな決定木は、ルートからリーフまで多くの決定ノードがあり、それらすべてが不確実性の下でトラバースされるため、エラー率と分散が大きくなる傾向がある。たとえば、バギングは多くの小さな決定木を計算し、それらの結果の平均を使用する。これにより、分散(したがってエラー率)が大幅に減少する。
アンサンブルの種類
ベイズ最適分類器
ベイズ最適分類器は、常に次の式の最適解を返す。
- アンサンブル・ラーニングのページへのリンク