
Dimensioning the Heterogeneous Multicluster Architecture
via Parallelism Analysis and Evolutionary Computing

Falko Guderian, Rainer Schaffer, and Gerhard Fettweis
Vodafone Chair Mobile Communications Systems

Technische Universität Dresden, 01062 Dresden, Germany
E-mail:{falko.guderian, rainer.schaffer, fettweis}@ifn.et.tu-dresden.de

Abstract

In the near future, embedded systems containing
hundreds of processing elements running multiple con-
current applications will become a reality. The het-
erogeneous multicluster architecture enables to cope
with the challenging hardware/software requirements
presented by such systems. This paper shows principles
and optimization of multicluster dimensioning aiming
at an appropriate distribution of applications onto clus-
ters containing different types of processing elements.
The approach represents an initial exploration phase
efficiently finding a suitable multicluster configuration
in the large design space. Hence, results should be
further refined by more accurate but less time-efficient
simulation-based techniques. As the starting point,
a parallelism value matrix is analytically extracted
describing application mappings independently on the
architecture and scheduling. A genetic algorithm (GA)
and a mixed-integer linear programming (MILP) ap-
proach solving the dimensioning problem are introduced
and compared. Both solutions use the parallelism value
matrix as input. Scalability results show that the GA
generates results faster and with a satisfactory quality
relative to the found MILP solutions. Finally, the
dimensioning approach is demonstrated for a realistic
benchmark scenario.

Keywords multicluster architecture · parallelism anal-
ysis · evolutionary computing · evolutionary design

1 Introduction
Future embedded systems move from Multi-Processor
Systems-on-Chip (MPSoC) to Many-Core systems con-
taining hundreds of heterogeneous processing elements
(PEs) allowing to execute multiple, concurrent appli-
cations [1, 2]. The multicluster architecture enables
to cope with the challenging hardware/software re-
quirements. Farkas et al. [3] show that a multicluster
architecture has significant performance enhancements
in terms of cycle time, relative to a single-cluster
architecture with the same hardware resources. In
addition, the size and complexity of components on
critical timing paths is reduced. Similar to [3], our

multicluster architecture is a decentralized and dy-
namically scheduled architecture. Due to task-level
granularity, heterogeneous PEs as well as interfaces
to memory and peripherals are distributed across the
clusters. The dimensioning is limited to multiclusters
representing sets of heterogeneous PEs. Hence, each
cluster corresponds to a MPSoC and includes a control
processor (CP) for task scheduling.
Dimensioning the multiclusters requires to efficiently

distribute multiple applications among clusters with
different PE types. The approach represents an initial
design space exploration (DSE) phase efficiently finding
a suitable multicluster configuration in the large design
space. We introduce a fast dimensioning approach for
the appropriate distribution of applications onto clusters
with heterogeneous PE types. Each application include
deadline and period representing real-time constraints.
In this paper, parallelism analysis is applied to repre-

sent the mapping of an application onto heterogeneous
PEs via modified parallelism profiles [4, 5]. We use
the idea of [5] to extract parallelism profiles which are
independently on an architecture and scheduling. The
profiles are independently on an architecture because
a machine with unlimited resources is considered. To
be independent on a scheduling, as soon as possible
(ASAP) and as latest as possible (ALAP) schedules
are calculated to extract earliest starting and latest
fishing times. Resulting slacks are added into the
profile. Latency implied by the CP can be easily
included by simply shifting the starting and finishing
times. From the profiles, average parallelism values
are determined for each PE type. Then, a mapping
of applications onto a cluster is represented by the
accumulated parallelism values. Our approach focuses
on deriving a reasonable number of PEs per cluster.
The use of average parallelism values enables fast
exploration to efficiently search in the large design
space. Hence, the dimensioning represents an initial
DSE phase. Given the dimensioning solution, system
refinement will be performed in more accurate but less
time-efficient simulation-based techniques.
From the average parallelism values, a parallelism

value matrix is built representing a mapping of multiple
applications onto a machine with unlimited resources
(heterogeneous PEs). Hence, the parallelism value

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



matrix is also independently on an architecture and
scheduling. The dimensioning uses the parallelism
value matrix as input. We propose a heuristic solution
technique which ensures efficiency in finding a suit-
able dimensioning solution. For more than a decade,
genetic algorithms (GAs) have been used to solve
DSE problems generating high-quality solutions meet-
ing multiple objectives and constraints [6]. Moreover,
our dimensioning approach supports problem formu-
lation via Mixed Integer Linear Programming (MILP)
to provide an optimal reference. A scalability analysis
evaluates the quality of the GA relative to the MILP.
Finally, the approach is demonstrated using a realistic
application scenario based on the Embedded Systems
Synthesis Benchmarks Suite (E3S) [7].
In addition, the approach allows dimensioning of

multiclusters representing sets of homogeneous PEs.
The latter assumes that each application can be dis-
tributed among clusters. The solution of this mul-
ticluster dimensioning is to simply add the average
parallelism values for each PE type and the accu-
mulated and rounded up parallelism value shows the
number of PEs in a cluster. Hence, dimensioning of
multiclusters representing sets of homogeneous PEs is
not further mentioned.
In the remainder of the paper, Section 2 reviews

related work. Section 3 gives an overview of our ap-
proach for dimensioning the multicluster architecture.
The GA is explained in detail in Section 4. Then,
Section 5 describes the MILP. We demonstrate experi-
ments and corresponding results in Section 6. Finally,
extensions for the dimensioning problem are discussed
in Section 7. Section 8 concludes our work.

2 Related Work
Evolutionary computing found its way into DSE of
embedded systems more than 10 years ago. Blickle et
al. [8] applied evolutionary algorithms to map task-level
specifications onto heterogeneous hardware/software
architectures, known as system-level synthesis. Palesi
and Givargis [9] used a GA to explore the design
space of a parameterized SoC architecture meeting
multiple objectives. Künzli et al. [10] presented a
framework for design space exploration of embedded
systems. The framework allows to conveniently solve
multiobjective DSE problems via GAs. All given
DSE examples imply a simulation-based mapping of
applications onto architectures. In order to support the
exploration of larger design spaces, our DSE approach
uses analytical-based mapping in terms of parallelism
analysis, as mentioned in Section 1.
Maalej et al. [11] presented a semi-analytical dimen-

sioning approach similar to ours. A pre-exploration
step extracts several metrics via task analysis and de-
signer experience. Afterwards, a GA finds solutions
in the reduced design space of an underlying clustered
heterogeneous multi-processor architecture. Contrast-
ing to the work presented here, the authors represent
each task by several metrics and tasks are clustered

Figure 1: Overview of the heterogeneous multicluster
dimensioning approach.

to build the architecture. In our approach, the focus
is on an efficient distribution of applications among
clusters. We use a single vector of parallelism values
to describe an application mapping which drastically
reduces complexity.

3 Methodology for Dimensioning the Het-
erogeneous Multicluster Architecture

Figure 1 depicts our methodology to dimension the
heterogeneous multicluster architecture by efficiently
distributing the given applications amongst the clusters.
Multiple concurrent running applications are used as
input to extract a parallelism value matrix. Each
application is described as high level task graph and
the extraction uses performance figures of the available
PE types. The parallelism value matrix is forwarded
to the solver which assigns each application a cluster.
Considering several design objectives and constraints,
the approach aims at grouping applications, sharing
same PE types, into clusters. Figure 1 shows two
solvers: a C++ based GA and a MILP solution
implemented on a commercial tool.

3.1 Application and architecture model

Our proposed approach assumes multiple applications,
each composed of several tasks. Moreover, applica-
tions are considered as threads which are independently
on each other. More specifically, both no data and
no control-flow dependency exist between threads. It
allows us to limit application execution to a cluster
and a task is executed on a PE. The target architecture
is illustrated in Figure 2 and consists of clusters which
are sets of heterogeneous PEs, e.g., General Purpose
Processor (GPP), Digital Signal Processor (DSP), and
Application-Specific Integrated Circuit (ASIC). Each
cluster relates to a heterogeneous MPSoC and includes
a control processor (CP) responsible for dynamic task
scheduling. The CP is limited by the amount of effi-
ciently handled tasks since it resolves task dependencies
at runtime. A resulting scheduling delay motivates to
constrain the maximum number of PEs per cluster.
In addition, Figure 2 shows an underlying network
connecting cluster resources. As the approach aims at
deriving the reasonable number of PEs, we consider
data transfer effects assuming a fixed communication

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Figure 2: The heterogeneous multicluster architecture.

network topology.

3.2 Extracted parallelism value matrix

The dimensioning approach estimates application map-
pings onto clusters through average parallelism values.
Hence, the first step is to extract the parallelism value
matrix Φ for the given applications as shown in Fig-
ure 1. Φ defines average parallelism values φij for
each application i and PE type j calculated from the
parallelism profiles. An example is the following par-
allelism value matrix Φ for three PE types (rows) and
two applications (columns).

Φ =

⎛
⎜⎝

1.70 0.50

0.95 1.70

0.45 0

⎞
⎟⎠ .

Referring to the example above, the three paral-
lelism profiles of the first application (first column)
are illustrated in Figure 3. The second application
(second column) is limited to two PE types. In a
parallelism matrix Φ, average parallelism will be in-
terpreted as average number of PEs necessary to finish
an application on time. As mentioned in Section 1,
we apply a performance estimation technique based on
parallelism analysis developed in [5]. The technique
creates modified parallelism profiles [4] to analyze
the parallelism over time. A mapping option table is
used to consider only feasible application mappings.
Moreover, the parallelism analysis addresses a need
to meet application performance constraints, such as
latency or bandwidth. The ALAP schedule included
into the parallelism profile guarantees that a applica-
tion meets its deadline. Assuming enough available
parallelism, shortening a deadline will increase the
number of necessary parallelism and the height of the
profile, respectively. In a parallelism profile, commu-
nication costs (bandwidth constraints) are included via
a function of the transferred amount of data resulting
in delayed earliest starting times. The function can be
adapted to model different communication topologies.
In general, starting time of different applications can

be time shifted. This allows profiles of applications in
the cluster to be combined in a way that the total profile
is almost homogeneous. Different starting times avoid
peaks in the resulting profile as far as possible. Because
considering all possible time shifts is not suitable, the
nearly homogeneous profile will be approximated by
an average parallelism value. This value can easily
be determined by accumulating the average parallelism
values φij for PE type j and all applications i in the

Figure 3: Parallelism profiles and average parallelism/
PE load for an exemplary application i executed on
three PE types.

cluster.

3.3 Focused design objectives

Assuming an upper bound for the number of PEs in
each cluster (see Section 3.1), we focus on minimizing
(a) the total number of PEs in the system. In addition,
(b) the number of clusters must be minimized to
reduce control processors (CPs) in the system. Because
PEs are usually not fully utilized by an application,
several applications should share a PE within the
cluster. Hence, the optimization strategy is to efficiently
distribute applications among clusters. The PE reuse
between several applications minimizes the total number
of PEs. Reducing the number of CPs and PEs allows to
save system costs (area). Moreover, (c) the variability of
cluster size (in terms of number of PEs) is minimized to
balance application load among clusters. This allows
to reduce application delay resulting from queueing
at the CP and task scheduler, respectively. Reducing
delay and size (costs) are formulated as single objective
function converting the multi-objective problem into a
single-objective problem solved through a GA, see
Section 4. A MILP approach is used as reference, see
Section 5. We restrict our research to these design
objectives and a single-objective function because we
experienced that MILP solvers could only find the
optimal solution for a reduced problem formulation
and complexity, respectively. The complexity increases
with the number of applications, PE types, and objective
variables. In Section 7, we discuss further design
objectives and multi-objective problem formulation.

4 Evolutionary Framework
Genetic algorithms (GA) allow fast solutions with
sufficiently high quality and easily support multiple
objectives. Our steady-state GA applies evolution of
overlapping populations of individuals over a number
of generations. In the GA, simple one-chromosome
individuals (haploid model) are used to describe the
dimensioning problem. A chromosome is represented
by a vector of genes. Each gene defines an application
and a gene value represents an allocated cluster. Given
two clusters (1, 2) and three applications, two example
chromosomes are defined as follows: g

1
= (1, 2, 2)

and g
2
= (1, 1, 1). The first chromosome shows that

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Figure 4: (Steady-state) GA principle.

both clusters are allocated by the applications. In
contrast, only cluster 1 has been used in the second
chromosome. Moreover, each individual is assigned a
fitness value determined by the fitness rate (objective)
function. Figure 4 shows the principle of the GA. An
initial population will be randomly generated. In each
generation, individuals with the best fitness values are
selected and crossed to generate new individuals and
new individuals are mutated according to a mutation
rate. Variation through one-point crossover and one-
point mutation enables an iterative improvement of
the offspring. Crossover and mutation can change
cluster configurations of an individual in a way that
the number of allowed PEs is exceeded changing it
to an illegal individual. Reparation is applied to
transform from illegal to legal individuals allowing
for significantly improved statistics of fitness values
compared to no reparation is applied. The scalability
analysis in Section 6 is used as example assuming
a crossover rate of 60 % and a mutation rate of
20 %. Compared to no reparation, variation of the
fitness values improves by around 10 % and the
average fitness values increase by around 2 %. Despite
reparation results in around 100 % longer solution time
for the example, it significantly improves the quality
of solution.
Table 1 gives the constant terms used in our work

for both the GA and MILP implementation. Assume
that we are given N number of applications, where
1 ≤ i ≤ N . Applications are executed on M PE
types, where 1 ≤ j ≤M . Parallelism values for each
application i and each PE type j are expressed by
φij ∈ R and they represent elements of parallelism
value matrix Φ ∈ R

M×N . The GA places applications
on C cluster candidates, where 1 ≤ k ≤ C. In case
the number of cluster candidates C is larger than the
number of allocated clusters, some cluster candidates
will be unused. The maximum allowed number of PEs
in a cluster is given by Pmax.

Pk defines the number of PEs in each cluster
candidate, where 0 ≤ Pk ≤ Pmax. The maximum and
minimum number of PEs amongst the allocated clusters
are expressed by Umax and Umin. That is:

Umax = max
k

(Pk)

Umin = min
k

(Pk) ∀Pk > 0.

In addition, we use b
′

k = 1 to indicate that cluster

Table 1: The constant terms used in our GA/ MILP
implementation. These are either architecture or appli-
cation specific.

Constant Definition
N number of applications
M number of PE types
C number of cluster candidates
Pmax maximum number of PEs in cluster
Umax /min maximum/ minimum number of PEs

extracted from the allocated clusters
φij parallelism value of PE type j in

application i (obtained as explained
in Section 3.2)

Φ parallelism value matrix

candidate k contains zero PEs (Pk = 0).
The fitness value determines the best individuals

from a population which are selected to generate a
new population. As mentioned in Section 3.3, our
fitness rate function is determined by the design goals
which try to minimize size and delay:∑

k

Pk

︸ ︷︷ ︸
#PEs

+C −
∑
k

(b
′

k)

︸ ︷︷ ︸
#clusters

+Umax − Umin

︸ ︷︷ ︸
variability

→ min (1)

The first term in (1) represents a primary optimization
goal minimizing the total number of PEs. This is
because the remaining terms generally have smaller
values. Hence, the minimal number of clusters (term 2)
and equally distributed PE load amongst the clusters
(term 3) are considered as secondary goals without
explicit weighting. For example, increasing the number
of applications and keepingPmax constant can implicitly
render term 2 higher than term 3. In contrast, less
clusters could cause more delay at the CP (larger
variability). If necessary, (1) can be modified to
explicitly weight the terms.
In the GA, Algorithm 1 (below) performs reparation

of an illegal individual after crossover and mutation.
Reparation is applied by randomly moving applications
(line 7) between clusters until each cluster does not
exceed Pmax (line 6). Before each reparation, the
current numbers of PEs in the clusters is determined
(line 3). The assigned cluster of an application has been
taken from an according gene value. In addition, the
moving of applications (line 7) is randomly initialized
to improve GA results. Lines 4 and 8 ensure that
reparation proceeds until the individual gets legal.
Referring to Figure 4, reparation can occur after

mutation and crossover if Pmax has been exceeded
in a cluster. As mentioned before, the number of
reparations in each generation depends on the Pmax

constraint. Given an application scenario, the number
of reparations increases with smaller Pmax. This is
because cluster size becomes closer to Pmax making
illegal individuals more likely after variation through
crossover and mutation.

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Algorithm 1 Reparation of an illegal individual
1: Select genome g

2: while g is illegal do
3: determineNumberPEsInClusters(g)
4: g ← legal
5: for each gene g in g do
6: if Pg > Pmax then
7: randomlyMoveApplication(g)
8: g ← illegal
9: exit for
10: end if
11: end for
12: end while

Our GA implementation is based on GaLib [12] and
overwrites the genetic operators and the fitness rate
function. With the experimental evaluation in Section 6,
we show that the GA produces solutions faster and with
adequate quality compared to the found MILP solutions.
As an example from the complexity scaling analysis,
we generated results in around 200 milliseconds for
a larger scenario including 20 applications and 10 PE
types.

5 MILP Formulation
We present a MILP formulation of the problem of
minimizing size and delay. MILP allows to solve
problems with both discrete decisions and continuous
variables. The MILP framework is used to compare
results with our GA implementation introduced in the
previous section. The problem has been formulated in
linear programming (LP) format to be further solved
by CPLEX [13], a commercial tool.
Our MILP approach uses binary variables to place

applications in the clusters. In order to express the
location of application i in cluster k, we use the bik
variable. More specifically,

bik :=

{
1 if application i placed in cluster k
0 otherwise.

Additional integer variables are used to calculate
the allocated PEs and to ensure the Pmax constraint.
The number of instances of PE type j allocated in
cluster k is indicated by the Pjk variable. That is,

• Pjk . . . instances of PE type j in cluster k.

Minimum and maximum values for the number of
PEs amongst the clusters are needed to calculate the
variability in cluster size. Their calculation requires
comparison constraints in the MILP using an upper
limit L. It corresponds to the worst case of the total
number of PEs. Hence, φij for application i and PE
type j are rounded up and added up:

• L =
∑

ij�φij� . . . upper limit for number of PEs.

Please note that the ceil (�.�) operator requires additional
real variables and constraints which are not shown for

clarity reasons. After describing the binary and integer
variables, we continue presenting our constraints. The
first constraint is regarding a unique assignment of an
application, that is, an application i can be executed
only on one cluster k:

C∑
k=1

bik = 1 ∀i ∈ N (2)

A PE reuse amongst applications is enabled by merging
parallelism values for shared PE types. Hence, all
instances of a PE type j are aggregated for each
cluster candidate k and its allocated applications i:

Pjk =
⌈ N∑

i=1

bikφij

⌉
∀j ∈M ; ∀k ∈ C (3)

In (3), the parallelism value φij is addressed for
application i and PE type j. For each cluster candidate k
and PE type j, the aggregated instances are rounded up.
Note that the necessary rounding constraints are not
presented for clarity reasons. Now, the resulting PEs
are aggregated for each cluster candidate considering
the limited cluster size Pmax:

Pk =
M∑
j=1

Pjk ∀k ∈ C (4)

Pk ≤ Pmax ∀k ∈ C (5)

All PE types j included in the cluster candidates k are
summed up in (4). Hence, Pk is the number of PEs in
the cluster candidate k. Referring to Section 3.1, each
cluster is constrained by Pmax, the maximum number
of allowed PEs. This is ensured by (5). In order to
calculate the variability in cluster size, (6), (7), (8),
and (9) determine the minimum and maximum value
of Pk:

Pk ≤ Umax ∀k ∈ C (6)

b
′

kL+ Pk ≥ Umin ∀k ∈ C (7)

Pk − 2L(1− b
′

k) ≤ 0 ∀k ∈ C (8)

Pk + 2Lb
′

k ≥ 1 ∀k ∈ C (9)

In (6) and (7), the maximum and minimum number of
PEs in the clusters are calculated. From (7), you can
see that for b

′

k = 1, cluster candidate k is excluded
from the minimum calculation because only allocated
cluster will be considered. In addition, (8) and (9) are
necessary to set b

′

k = 1 if cluster candidate k includes
zero PEs. Given the necessary constraints in the MILP
formulation, our objective function corresponds to the
fitness rate function in Section 4 which minimizes size
and delay of our optimization problem.

6 Experimental Evaluation
First, the GA performance is evaluated using the MILP
solution as reference. Processing times are normalized

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



to a system with an AMD Opteron running at 2.2 GHz
using one core. Second, realistic benchmark results
demonstrate the multicluster dimensioning approach.
GA parameters have been optimized based on the
presented experimental setup. More specifically, 60 %
crossover rate, 20 % mutation rate, and population size
of 50 have been choosen from the optimization results.

6.1 Experimental setup

For the complexity scaling analysis, we generated par-
allelism value matrices Φ with pseudo-random values.
The probability that an application executes on a PE
type has been set to 50% (∼= 1 − sparsity of Φ).
The number of applications i and the number of PE
types j are increased to scale towards more complex
problems (Φ). We apply the MILP solution from
Section 5 to evaluate the performance of the GA im-
plementation from Section 4. Each GA experiment
runs for 1.000 generations and is repeated 100 times
to account for the non-deterministic nature of a GA.
Then, minimum, maximum, and average fitness val-
ues are extracted from the results. With C = N ,
the number of applications determines the number of
cluster candidates. Moreover, Pmax has been set to a
value that allows for more than one cluster and several
applications can share a single cluster.
The second setup focuses on dimensioning results

using a multi-application scenario based on the E3S
Benchmark Suite [7]. E3S is largely based on data
from the Embedded Microprocessor Benchmark Con-
sortium [14]. Task graphs describe the periodic appli-
cations which are concurrently executed in the scenario.
We extract Φ from the 20 provided applications which
range from automotive, industrial, telecommunication,
networking, to general-purpose applications. In addi-
tion, we limited ourselves to five PE types from the
17 available processors for clarity reasons without loss
of generality. The sparsity of Φ is 63 %, indicating
that an application will be executed on 1.85 PE types
on average. The number of cluster candidates is also
determined by C = N . With Pmax = 4, we constrain
each cluster to a maximum of four PEs.

6.2 Complexity scaling results for the
GA and MILP solutions

Figure 5 depicts the performance behavior of the GA
and MILP in case the number of applications and
PE types increase to more complex problems (Φ).
A MILP solution could only be found for maximum
10 applications. (For larger problem sizes, the solver
aborts due to memory limitations, in our case 2 GB.)
The found MILP solution is mostly a sufficient but not
necessarily an optimal solution. For example, the MILP
problem with 20 applications and 10 PE types includes
1125 linear constraints, 200 reals, 427 integers, and
620 binaries. Solving this problem, the MILP solver
aborted after 4448 seconds resulting its best found
solution with objective value of 204. In contrast, GA
executes each run in around 200 milliseconds with an

average deviation of 1.9 % from the MILP solution.
One reason for the low difference to MILP is that
Pmax drastically reduces the solution space otherwise
assigning N applications to C clusters would result in
CN combinations. Hence, GA generates sufficiently
high quality solutions in a fraction of time whereas
MILP could not even find an optimal solution. Refer-
ring to Figure 5, GA generates better solutions than
the commercial MILP solver, e.g., for 20 applica-
tions and 6 / 8 PE types. Moreover, the difference
between max. and min. objective values increases
with larger Φ. In general, the solution time, after
GA and MILP converge, increases with the problem
complexity. Whereas a larger sparsity of Φ decreases
MILP problem complexity after variable optimization
in the solver. In the two examples before, the GA con-
verges after around 5.000 / 10.000 generations whereas
less than 1.000 generations are required for smaller
problems. In contrast, small MILP problems already
have hundreds of variables and constraints, meaning a
large number of subproblems, solved by the branch &
cut algorithm. Despite solution time also depends on
the way how linear problems are described, it gives
a reason why the MILP converges after several hours
for smaller problems.
As mentioned in Section 4, the quality of GA so-

lutions has been improved applying reparation after
crossover and mutation at the expense of larger simu-
lation time. As mentioned before, MILP does not find
an optimal solution for a larger number of applications
and PE types. In contrast, the nature of GAs does
not guarantee an optimal solution. For larger problem
sizes, the GA shows increasingly varying fitness values
affecting the quality of solution. A major advantage is
that the GA easily scales to larger problem sizes than
considered in the experiments. Regarding the quality of
solution the GA enables, there is no further conclusion
possible due to missing optimal MILP solutions for
larger problems.

6.3 Dimensioning result for the E3S
multi-application scenario

Since the sparsity of Φ is relatively large, MILP was
able to find the optimal solution shown in Figure 6.
Moreover, the GA has found this solution due to
the 100 reruns. The aggregated parallelism values
and the resulting number of PEs are illustrated. The
result represents a heterogeneous multi-cluster solution
since all clusters are heterogeneous in terms of PE
types (described by different shades of grey). In the
solution, eleven PEs are distributed over three clusters.
In contrast, a single-cluster solution would require
nine PEs. From the figure, we see that the PEs of
TI TMS320C6203 are utilized relatively homogeneously
in the clusters. Despite the IBM PowerPCs are not
much used, they occur in each cluster because the
PE type is often allocated by the 20 applications. In
addition, the AMD K6-IIIE is limited to cluster 2
since it is called by only one application. Referring
to Figure 6, cluster 3 includes one IDT79RC64575

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



hardly used because the PE is already fully utilized in
cluster 1. For example, this information can be feed
back to the parallelism analysis to reuse one of the
remaining PE types. If possible this would lead to
further improvements in the multi-cluster dimensioning.

7 Discussion and Future Work
Since MILP does not find a solution for larger problem
sizes, we only want to discuss the extension of the
GA in terms of more objectives and constraints. For
example, the study limits all clusters to one Pmax

value estimating the maximum allowed CP load by the
number of PEs the CP is able to handle. In case of
heterogeneous PEs, this is a rough estimation because
some PEs can execute tasks faster than others. A more
precise approach would be to estimate the maximum
allowed CP load by the number of tasks a CP is able
to schedule per time unit. Parallelism analysis allows
to extract the number of scheduled tasks per time unit
for each application. During the dimensioning, these
numbers are aggregated and then compared with the
maximum allowed CP load in each cluster. In addition,
Pmax can also vary among clusters, e.g., to consider
different cluster sizes and CP types.
Further extensions of the work will be to limit or

minimize each cluster in terms of area, power con-
sumption, and heat dissipation. In addition, balancing
of power and temperature, respectively, would allow
to equally distribute heat amongst the clusters for the
purpose of improved reliability. The dimensioning
approach can also be used to efficiently distribute ap-
plications amongst clusters with a fixed number of PEs.
Moreover, the static dimensioning approach can be ex-
tended to analyze dynamically clustered systems. The
communication topology can also be optimized using
our approach. For that reason, transfer task parallelism
is extracted and the communication interfaces, e.g.,
DMA and peripherals, are considered as an additional
PE type in Φ. Despite the focus on task-level par-
allelism, the work could be easily used to dimension
clustered heterogeneous multi-processor architectures,
such as clustered VLIW processors. Hence, paral-
lelism analysis is applied to extract instruction-level
parallelism values related to all functional unit types.
Since the paper focuses on principles and optimiza-

tion of multicluster dimensioning realizing an initial
exploration phase, future work aims at comparing and
combining the approach with more accurate but less
time-efficient simulation-based exploration, e.g., via
SystemC simulation.

8 Conclusion
We introduced a GA-based approach which uses only
one parallelism value matrix to dimension the hetero-
geneous multicluster architecture. The GA generates
results faster and with a satisfactory quality relative to
the found MILP solutions. The parallelism values rep-
resent application mappings which are independently
on an architecture and scheduling. Hence, the ap-

proach enables an initial DSE phase to search for first
designs which will be further refined in more accurate
but less efficient DSE phases. We propose several
enhancements to extend the dimensioning problem to
additional objectives, constraints, and more diverse
communication and computation topologies. Finally,
our GA-based dimensioning returns statistics of the
utilization of PE types in the clusters. In future work,
this information is fed back to enable the continuous
improvement of parallelism analysis and dimensioning,
respectively. This iterative enhancement of multiclus-
ter dimensioning results in higher cluster utilization by
executing on less PEs.

References
[1] S. Borkar, “Thousand core chips: a technology per-

spective,” in Proc. of DAC, 2007, pp. 746–749.
[2] M. Horowitz and W. Dally, “How scaling will change

processor architecture,” in Proc. of ISSCC, 2004, pp.
132–133 Vol.1.

[3] K. I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “The
multicluster architecture: Reducing processor cycle time
through partitioning,” International Journal of Parallel
Programming, vol. 27, pp. 327–356, 1999.

[4] K. C. Sevcik, “Characterizations of parallelism in ap-
plications and their use in scheduling,” in Proc. of
SIGMETRICS, 1989, pp. 171–180.

[5] B. Ristau, T. Limberg, O. Arnold, and G. Fettweis,
“Dimensioning heterogeneous MPSoCs via parallelism
analysis,” in Proc. of DATE, 2009, pp. 554–557.

[6] H. Esbensen and E. Kuh, “Design space exploration
using the genetic algorithm,” in Proc. of ISCAS, vol. 4,
1996, pp. 500–503.

[7] R. Dick. (2011, Sep.) Embedded system
synthesis benchmarks suite. [Online]. Available:
http://ziyang.eecs.umich.edu/∼dickrp/e3s/

[8] T. Blickle, J. Teich, and L. Thiele, “System-level synthe-
sis using evolutionary algorithms,” Design Automation
for Embedded Systems, vol. 3, pp. 23–58, 1998.

[9] M. Palesi and T. Givargis, “Multi-objective design
space exploration using genetic algorithms,” in Proc. of
CODES, 2002, pp. 67–72.

[10] S. Künzli, L. Thiele, and E. Zitzler, “Multi-criteria
decision making in embedded system design,” in In B.
Al-Hashimi (Ed.), System On Chip: Next Generation
Electronics, IEE Press, 2006, pp. 3–28.

[11] I. Maalej, G. Gogniat, J. L. Philippe, and M. Abid,
“System level design space exploration for multiproces-
sor system on chip,” in Proc. of Symposium on VLSI,
2008, pp. 93–98.

[12] M. Wall. (2011, Sep.) Galib: A c++ library of
genetic algorithm components. [Online]. Available:
http://lancet.mit.edu/ga/

[13] IBM. (2011, Sep.) Ibm ilog cplex optimizer. [Online].
Available: http://www.ibm.com/software/integration/
optimization/cplex-optimizer/

[14] EEMBC. (2011, Sep.) The embedded micropro-
cessor benchmark consortium. [Online]. Available:
http://www.eembc.org/

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.



Figure 5: Complexity scaling results for MILP and GA.

Figure 6: Heterogeneous multi-clusters optimized for the E3S [7] benchmark scenario.

This document is a preprint of: F. Guderian, R. Schaffer, G. Fettweis et al., “Dimensioning the Heterogeneous Multicluster Architecture via Parallelism Analysis and
Evolutionary Computing,” in Proceedings of IEEE Congress on Evolutionary Computation (CEC 2012), Brisbane, Australia, Jun 2012. DOI:10.1109/CEC.2012.6256116

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for

resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.


