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ABSTRACT

Causal inference can quantify cause-effect relationships in domains
as varied as medicine, economics and public policy. Production
computer systems exhibit a similar level of complexity and a recur-
ring need to diagnose problems quickly. However, systems are only
observed imperfectly, often via long, messy, semi-structured logs.

In this work, we want to accelerate large systems debugging
by applying causal inference over logs, enabling engineers to di-
agnose problems and assess interventions in a principled manner.
Our framework achieves this through two human-in-the-loop mod-
ules: (1) The Candidate Cause Ranker, through which one can
determine the causes of a variable without running a full causal dis-
covery algorithm; and (2) the Interactive Causal Graph Refiner,
which helps engineers compute an unbiased estimation of their
effect of interest without extensive manual causal graph verifica-
tion. Both modules are powered by the insight that only part of the
causal graph of the system is needed to correctly quantify a given
effect of interest. We also provide a data preparation pipeline, the
Log Converter, which transforms raw, messy, real-world logs into
an appropriate tabular input for causal inference, using methods
drawn from data transformation, cleaning, and extraction.

We evaluate LOGos, a prototype implementation, on both real-
world and synthetic logs and find that: (1) The Candidate Cause
Ranker achieved an average precision 1.08×–18× higher than the
baselines, in interactive time; (2) The Interactive Causal Graph
Refiner required a number of causal judgments 1.61 × − − 16.83×
lower than the baselines; and (3) The latency of Log Converter

scaled linearly with three measures of the complexity of a log:
length, distinct templates, and fraction of tokens that are variables.
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1 INTRODUCTION

The scale and complexity of today’s computer systems make fail-
ures frequent [33, 46, 85, 113] and their diagnosis challenging,
especially in production [48, 82, 100]. Traditional systematic de-
bugging techniques, like testing [20, 63, 65, 81], formal verifica-
tion [14, 25, 41, 104] and simulation [47, 53, 105], often fall short
for problems on a large complex production system [82]. Oper-
ations teams do not have the time and expertise (or often even
the access permissions) to fully ascertain the correctness of the
codebase [46, 88]. Instead, they have to work backward from each
failure towards its cause using observational data collected from the
system, most notably large volumes of logs, usually in text format.

Episode 1. Alex is an on-call engineer at a startup that offering a
cloud-based data service. Several users are complaining that a certain

feature, which triggers a query on a user-specific PostgreSQL back-

end database, is very slow. Alex’s manager has tasked Alex with

discovering why the feature is so slow for these specific users and the

best way to fix it quickly. But all Alex has to go on is text logs!

User Goal. Informally, we have heard reports from operations
teams spending tens of human-hours with tools such as Splunk [95]
or Datadog [22] in order to diagnose a poorly-understood problem.
Such log analysis tools offer a good starting point, given their broad
coverage of software and hardware components through existing
log management infrastructure. However, if users could simply ask

such a tool why an observed problem took place and by how much

we expect each of a collection of remedies to help, then we might
dramatically lower the Mean Time to Repair (MTTR).

To answer such questions in a principled manner, we turn to the
growing field of causal reasoning [75], which aims to quantitatively
describe cause-effect mechanisms. Causality has provided scientists
with a common language to express and evaluate hypotheses about
complex systems across diverse domains [11, 17, 79, 91, 101]. In
this work, we adopt the standard theory of causality developed
by Pearl [75], where the goal is to correctly calculate an Average

Treatment Effect (ATE) corresponding to a hypothesis about the
observed phenomenon – for example, in Alex’s case, if one more
worker is added to PostgreSQL, how much will mean query latency
change? What if the working memory is increased by 1MB?
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To calculate such ATEs, Pearl’s theory requires not only observa-
tions, but also another input called a causal graph. The causal graph
represents each observed variable as a node and each potential
direct causal relationship as a directed edge, and can be used to
infer which variables to adjust for (the adjustment set). Without a
proper adjustment set, an ATE calculation can be inaccurate due
to confounding bias. We aim for a causal diagnosis tool that can
help address a wide range of software and data systems problems,
enabling a user experience like the following:

Episode 2. Alex uses our framework to rapidly find that the

maximum allowed number of parallel workers exerts a high absolute

ATE onmean query latency. Alex forwards this to the database team to

ensure that this setting is set appropriately, restoring user performance.

Technical Problem. As described, correctly estimating an ATE
from observational data requires a valid adjustment set; and finding
a valid adjustment set is in turn made possible by an accurate causal
graph. Obtaining such a causal graph is therefore our main concern.

For problem instances with few variables, a causal graph is usu-
ally assumed to be manually curated by a domain expert [62, 102].
However, manual curation is a daunting and error-prone task over
the possibly hundreds or thousands of log-derived variables [70],
since the number of edges to consider for inclusion is quadratic in
the number of variables. Instead, it is often possible to obtain a (par-
tial) causal graph from the data itself, using one of several available
causal discovery algorithms [30, 90, 94, 103, 114, 122]. However, as
we will show in Section 2.2, these methods fall short for log datasets
because of three challenges of log data:
(1) Functional Dependencies: Logging aims to capture as much

information about the system as possible, even if redundant,
since reproducing a sequence of events may not be an option.
This leads to widespread functional dependencies in the result-
ing datasets, which cause issues with the conditional indepen-
dence tests used by many causal discovery algorithms.

(2) Large Number of Variables: The sophistication and modu-
larity of modern systems leads to logs capturing hundreds or
thousands of variables. The exponential complexity of causal
discovery algorithms can be prohibitive in this setting.

(3) BiasedDataCollection: Capturing a large number of variables
at a high frequency can mean that an interesting log message
is drowned out by strong “common case” message sequences,
which will be more readily identified during causal discovery.

The key difficulty we tackle in this paper is efficiently obtaining a
causal graph from log data despite these challenges.
Our Approach. To combat the three challenges above, we use a
key insight: correctly calculating an ATE only requires part

of the causal graph. As long as we focus on this part, we can
solicit human input efficiently, without overwhelming the user. We
therefore approach causal inference over log data using a human-

in-the-loop framework, combining the intelligent use of available
data and a judicious solicitation of user input. This leads to a causal
graph sufficient for calculating the ATE of interest correctly, with
significantly less user input than a naive approach. We achieve this
through two human-in-the-loop modules: the Candidate Cause
Ranker and the Interactive Causal Graph Refiner, together
with a data preparation pipeline, the Log Converter.

The Candidate Cause Ranker helps users quickly discover
causes of their phenomenon of interest. In each call, the user spec-
ifies a variable 𝐸 and is presented with a ranked list of candidate
causes {𝐶𝑖 }. The user can then tap their expertise to evaluate the
plausibility of each candidate 𝐶𝑖 and possibly add the edge 𝐶𝑖 → 𝐸

to their causal graph. Crucially, if some candidates are functionally
dependent, the user has the freedom to include the most appropri-
ate one for their analysis into the causal graph. Thus this module
addresses Challenge 1. By iteratively applying this process, users
can navigate log data efficiently to find a “root cause” 𝑇 of their
original outcome variable of interest𝑂 (e.g. mean latency, for Alex).

However, discovering one causal path from𝑇 to𝑂 is not enough
to correctly calculate the ATE, since there may be additional vari-
ables confounding this effect. Such variables should be added to the
graph and used to derive the adjustment set. For example, Alex may
mis-estimate the impact of increased parallelism on mean query
latency if the changes made to other settings (e.g. the working mem-
ory) in order to accommodate more parallelism are not considered.
The Interactive Causal Graph Refiner addresses this problem
through another human-in-the-loop process. In particular, given 𝑇 ,
𝑂 and the user’s current causal graph, it presents to the user graph
edits that would maximally affect the ATE of 𝑇 on 𝑂 . The user can
then consider the plausibility of such edits and decide whether to
apply them, progressively increasing the accuracy of their graph
and the robustness of their ATE calculation. This frees the user
from having to consider the possible influence of every variable in
the dataset on the ATE of interest, addressing Challenge 2.

Of course, even before a causal graph can be built, one must
extract the problem variables from the textual log. Therefore, along-
side our human-in-the-loop approach to causal graph construction,
we present the Log Converter, a pipeline transforming raw log
inputs into a tabular dataset appropriate for causal analysis. This
dataset both serves as the input to our human-in-the-loop mod-
ules, and is the second input to Pearl’s model for ATE calculation
(alongside the graph itself). After parsing the logs, our pipeline uses
Large Language Models to derive human-understandable variable
tags, before distilling log information around the user’s desired
causal units and generating appropriate aggregated variables for
every causal unit to maximize empirical entropy. This approach
to aggregation allows interesting observations to cut through the
noise of uninteresting log messages, combating Challenge 3.

Our framework can be an important tool for engineers managing
complex systems. Our human-in-the-loop approach may also work
well in other domains, where data exhibit challenges similar to
those of logs. We will explore this direction in future work.
Overview of Related Work and Novelty. Large system debug-
ging is an active research area with serious commercial implications.
However, we are the first to simultaneously tap principled Pearl-style
causality and the wealth of information present in text logs.

On one hand, some works leverage causality but do not tap the
ubiquitous textual log data. ExplainIt! [45] draws inspiration from
causal techniques to build a root cause analysis engine over diverse
time series, while Sage [29] uses modular causal graphs based on
telemetry data to localize failures in microservice architectures.
CausalSim [4] leverages causality to make the most out of existing
tabular RCT data, avoiding further trials.
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Figure 1: An example partial causal graph for Alex’s problem.

On the other, there are works that operate on logs but model
causality informally at best. Aggarwal et al. only model causality
among the counts of error-level log messages [1], while we consider
the actual values embedded in them. Falcon [68] and Horus [69]
use simple temporal precedence as a proxy for causality, whereas
we model causality using the probabilistic Pearl model instead.
Additional related work is discussed in Section 9.
Contributions. In summary, we make the following contributions:
• We propose a human-in-the-loop framework for efficiently ap-

plying causal inference on data derived from logs.
• We introduce the Candidate Cause Ranker, a module for un-

covering candidate causes using curated data-driven suggestions.
• We present the Interactive Causal Graph Refiner, a module

for refining causal graphs for accurate calculation of an ATE.
• We describe the Log Converter, a data transformation pipeline

from logs into a tabular representation for causal inference.
• We evaluate LOGos, an open-source implementation of our pro-

posed framework [60] and the first end-to-end system that can
go from log files to ATEs, and find that:
– The average precision achieved by the Candidate Cause

Ranker was 1.08×–1.66× higher than Regression and 1.54×–
18× higher than LangModel, while remaining interactive.

– The number of judgments required by the Interactive Causal
Graph Refiner was 1.61×–2.50× lower than Regression and
5.50×–16.83× lower than LangModel.

– The Log Converter scaled linearly with each of three mea-
sures of the complexity of a log: length, distinct templates,
and fraction of tokens that are variables.

We previously demonstrated a prototype of this work [61] and
presented an early version of some of the ideas we expand here [62].

2 BACKGROUND

2.1 Background on Causality

We now introduce some notation and discuss elements of the con-
ventional causal inference framework developed by Pearl [75, 76].
Notation.We use uppercase letters to represent variables (e.g. 𝑉 )
and lowercase letters to denote their values (e.g. 𝑉 = 𝑣). 𝑉 →𝑊

indicates a directed edge from 𝑉 to𝑊 . Bold font denotes sets –
of variables, edges or edge edits. Calligraphic font denotes causal
graphs (e.g. G). For directed graphs, we distinguish a path (where
edges need not share the same orientation) from a directed path.
The ATE. Causal inference estimates the Average Treatment Effect

(ATE) of a treatment 𝑇 on an outcome 𝑂 over a population of
causal units – e.g. PostgreSQL sessions in Alex’s case. The ATE
may be distorted by confounding variables (or confounders) Z which
influence both 𝑇 and 𝑂 [75, 76]. For example, as shown in Figure 1,

if Alex estimates the ATE of max_parallel_workers on mean
latency, a confounder may be work_mem – more working memory
can accelerate individual operations and reduce latency directly,
but it may also mean a lower allowable level of parallelism, in the
interest of managing the total available memory in the system.

To avoid confounders, one can collect interventional data, where
𝑇 no longer depends on Z because it is externally assigned – e.g.
through a randomized controlled trial (RCT). However, RCTs can
be expensive and time-consuming – for example, Alex would have
to subject users to randomly selected settings. Depending on the do-
main, RCTs may also be unethical or completely infeasible. Thank-
fully, we can also compute the ATE over observational data, such as
the log data we focus on, as long as we adjust for the confounders:

Definition 1 (ATE from Observational Data [75]). Given a

treatment 𝑇 , an outcome 𝑂 , and a valid adjustment set Z,

𝐴𝑇𝐸 (𝑇,𝑂) = E𝑍 [E [𝑂 |𝑇 = 1,Z = 𝑧] − E [𝑂 |𝑇 = 0,Z = 𝑧]]

For the obtained ATE to be accurate, Z must be selected to cor-
rectly adjust for confounding bias. One method for achieving this
is the back-door criterion [75], which we will now build towards.
Causal Model. A causal model [75] captures causal relationships
among the problem variables. These relationships can be arbitrary,
but they are most often assumed to be linear [75, 94]:

Definition 2 (Linear Causal Model). Given variables 𝑉𝑖 for

𝑖 = 1, ..., 𝑛, with associated sets of direct causes (parents) P𝑖 and error
terms 𝐸𝑖 , a linear causal model is a set of equations:

𝑉𝑖 = 𝐸𝑖 +
∑︂
𝑃∈P𝑖

𝜆𝑃𝑃, 𝜆𝑃 ∈ R, 𝑖 = 1, ..., 𝑛

CausalGraph.A causalmodel can be visualized as a causal graph [74],
like Figure 1: a directed acyclic graph (DAG) with one node per
variable, where a directed edge 𝑉𝑖 → 𝑉𝑗 implies 𝑉𝑖 ∈ P𝑗 . In this
context, we may use “variable” to refer to the corresponding node
in the causal graph, and we can extend the notion of a parent:

Definition 3 (Ancestors and Descendants). Each ancestor
𝑊 of 𝑉𝑖 has a directed path to 𝑉𝑖 (𝑊 ∈ An(𝑉𝑖 )). Similarly, 𝑉𝑖 has a

directed path to each𝑊 among its descendants (𝑊 ∈ De(𝑉𝑖 )).

Path Blocking and the Back-Door Criterion.A valid adjustment
set is one that eliminates all sources of “indirect” causal influence.
This is formalized through the concept of path blocking:

Definition 4 (Path Blocking [75]). Path 𝑝 is blocked by

nodes B if and only if:

(1) 𝑝 has a chain 𝑖 →𝑚 → 𝑗 or fork 𝑖 ←𝑚 → 𝑗 s.t.𝑚 ∈ B; or
(2) 𝑝 has a collider 𝑖 →𝑚 ← 𝑗 s.t. ({𝑚} ∪ De(𝑚)) ∩ B = ∅.

Definition 5. A path 𝑝 between𝑇 and𝑂 is a𝑇 -backdoor path
if some directed edge on 𝑝 has 𝑇 as its destination.

Definition 6 (Back-Door Criterion [75]). A set Z satisfies

the backdoor criterion relative to variables (𝑇 , 𝑂) in a DAG G if:

(i) Z ∩ De(𝑇 ) = ∅; and
(ii) Z blocks every 𝑇 -backdoor path between 𝑇 and 𝑂 .

In this case, Z is a sufficient adjustment set for ATE(𝑇,𝑂).

160



Table 1: Causal discovery on the PostgreSQL dataset. ✓ and

● indicate a non-empty and empty causal graph, respectively;

▲ indicates a 30-minute timeout; and ✗ indicates an error.

Alg. Independence Result Alg. Scoring Function Result
Test / Method

PC [93] fisherz ✗ GIN kci ▲
mv_fisherz ✗ [107] hsic ▲
mc_fisherz ✗ GRaSP CV_general ✓
kci ▲ [52] marginal_general ✗
chisq ✓ CV_multi ✗
gsq ● marginal_multi ✗
d_separation ✗ BIC ✗

FCI [94] fisherz ✗ BDeu ✓
kci ▲ GES CV_general ▲
chisq ✓ [15] marginal_general ✗
gsq ● CV_multi ▲

LiNGAM
✗

marginal_multi ✗
[90] BIC ✗
Exact dp [92] ✗ BIC_from_cov ✗

astar [111] ✗ BDeu ✓

2.2 How Existing Approaches Fall Short

We will next showcase why existing approaches to causal discovery
are ill-suited for our use case through a motivating example.
The PostgreSQL Dataset. This 20MB dataset, presented fully in
Section 8.1.4, mimics Alex’s predicament. It includes collated logs
from 96 workload runs of queries from the TPC-DS benchmark [78],
issued against PostgreSQL. Before each run, we modified 6 Post-
greSQL configuration knobs, each of which has a known impact on
query latency. We selected the combinations of knob settings to in-
troduce confounding between work_mem and max_parallel_workers.
This is a small representative example of a broader class of con-
founding related to resource sharing that can come up often in
the real world, albeit with much larger volumes of data. Using
the Log Converter, we converted this log dataset into a tabular
format with 172 variables. We then attempted to derive a causal
graph over these variables. A useful causal graph would, at a

minimum, capture the hand-constructed structure shown

in Figure 1: work_mem and max_parallel_workers each affect

query latency and they confound each other’s effect.

Causal Discovery.We tested 29 different combinations of causal
discovery algorithms and configuration parameters from Causal-
Learn [117] on the PostgreSQL dataset. As shown in Table 1, 16
produced errors, 6 timed out after 30 minutes and 2 only produced
an empty graph. Of the 5 remaining cases:
• PC-chisq and FCI-chisq: The variable capturing query latency

was absent from the 4-node graph produced.
• GRaSP-BDeu and GES-BDeu: One 5-node connected component

included the variable capturing query latency and no configuration-
related variables. A different 4-node connected component in-
cluded the variables for work_mem and max_parallel_workers.

• GRaSP - CV_general: The graph showed query latency as caus-
ing work_mem, while max_parallel_workers was absent.

Analysis. The three challenges of log data from Section 1 directly
lead to the failures of existing causal discovery algorithms:
(1) Functional Dependencies→ Violated Assumptions: Many

of the 16 errors produced relate to violated algorithm assump-
tions, most notably due to a singular correlation matrix among
the variables, which leads to errors for some conditional inde-
pendence tests. This singularity is an expression of the func-
tional dependencies in log data. While such dependencies could

Figure 2: An architectural overview of our framework.

be automatically eliminated, this could unintentionally elimi-
nate variables crucial to system understanding in favor of less
interpretable alternatives. For example, in PostgreSQL, remov-
ing all the variables associated with the configuration knobs
from the causal graph, because the session ID is sufficient to
determine them, would clearly be unhelpful for Alex.

(2) Large Number of Variables→ Prohibitive Running Time:
Even when algorithmic assumptions are met, deriving a full
causal graph can be time-consuming, since many of the algo-
rithms offer exponential complexity, and log-derived datasets
can contain hundreds to thousands of variables. When diagnos-
ing a production problem live, such complexity is unacceptable.

(3) Biased Data Collection→ Non-Actionable Graphs: Even
when the algorithm finishes quickly, the resulting graph may
be unhelpful, because it lacks some variables of interest. As
seen above, no algorithm places query latency, work_mem, and
max_parallel_workers in the same connected component,
with some not even including all of these variables in the graph.
This is because causal discovery algorithms capture the causal
relationshipsmost salient in the data, but the biased loggingmay
mean that these relationships are not the ones most interesting

to the user, of which there may only be weaker evidence.
Since fully automatic causal discovery falls short, we develop a

human-in-the-loop framework that combines data-driven causal
hypotheses with the user’s expertise.

3 PROBLEM DEFINITIONS AND OVERVIEW

We now define the problems we address and present our framework,
illustrated in Figure 2. Input logs are transformed by the Log Con-

verter into a tabular dataset, from which the Candidate Cause

Ranker and the Interactive Causal Graph Refiner help derive a
partial causal graph, using a human in the loop. The tabular dataset
and the causal graph can then be used to answer ATE queries.

3.1 Problem Definitions

As seen in Section 2.2, causal discovery algorithms fall short when
applied to log-derived data. At the same time, although the user
could fully specify the causal graph G𝑟𝑒𝑎𝑙 by hand, this would be
impractical for large V as it would require𝑂 ( |V|2) causal judgments:

Definition 7 (Judgment). A user judgment for (𝐴, 𝐵) outputs
whether the causal graph should include 𝐴→ 𝐵, 𝐴← 𝐵, or neither.

However, many of the judgments produced in such an exhaustive
pass would neither help discover the root cause 𝑇 of a variable of
interest𝑂 , nor significantly impact the value of𝐴𝑇𝐸 (𝑇,𝑂) once𝑇 is
specified. The latter is true because many edges would be downright
irrelevant when assessing the backdoor criterion (Definition 6).
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This observation reveals a path to reducing the work required by
the user, bridging manual graph construction and automatic causal
discovery: using the log data to solicit user judgments in the most

impactful order. Ensuring a high-quality ordering directly translates
to reduced user effort for a given target downstream quality.

Given this approach, we present two problems, each addressed
by one of our framework’s human-in-the-loop modules:

Problem 1 (Candidate Cause Ranking). Let 𝑂 be a variable

of interest. Rank highly relevant candidate causes for 𝑂 based on the

available observations and solicit user judgments in this order, aiming

to maximize average precision (AP), defined as:

𝐴𝑃 =

∑︁𝑟𝑎𝑛𝑘𝑖𝑛𝑔_𝑙𝑒𝑛𝑔𝑡ℎ

𝑖=1 PrecisionAmongTop(𝑖) · IsPositive(𝑖)
# Ground Truth Positive Elements

Problem 2 (Interactive Causal Graph Refinement). Let an
ATE of interest, 𝐴𝑇𝐸 (𝑇,𝑂), and an initial causal graph G𝑖𝑛𝑖𝑡 . Mini-

mize the number of user judgment solicitations needed to converge to

the ground truth value of 𝐴𝑇𝐸 (𝑇,𝑂).

3.2 Candidate Cause Ranker

The Candidate Cause Ranker (Section 4) addresses Problem 1.
It operates on a tabular dataset D with variables V, derived from
the log. We will explain how this dataset is obtained using the
Log Converter in Section 3.4. The user can invoke the Candidate
Cause Ranker on a variable 𝐸, which we will refer to as the effect
variable, yielding a ranked list of candidate causes. By evaluating
the plausibility of each of these causes 𝐶𝑖 , the user can decide on
the appropriate state of the corresponding edge 𝐶𝑖 → 𝐸, possibly
adding it to the causal graph. The user can then apply this process
recursively by first invoking invoking Candidate Cause Ranker
on 𝑂 , then on one of the 𝐶𝑖 for which 𝐶𝑖 → 𝑂 was added to the
graph, and so forth, until a satisfactory root cause 𝑇 is discovered.

3.3 Interactive Causal Graph Refiner

The Candidate Cause Ranker lets the user find 𝑇 and pose their
ATE query of interest: 𝐴𝑇𝐸 (𝑇,𝑂). However, the user has so far
only unveiled one directed path from 𝑇 to 𝑂 , which means that
computing 𝐴𝑇𝐸 (𝑇,𝑂) may be erroneous. Per Section 2, correctly
computing𝐴𝑇𝐸 (𝑇,𝑂) from an observational dataset likeD requires
a valid adjustment set, which can be derived from a causal graph
using the backdoor criterion. But to apply the backdoor criterion
correctly, onemust have access to a sufficiently refined graph, which
includes all the 𝑇 -backdoor paths between 𝑇 and 𝑂 .

The InteractiveCausalGraphRefiner (Section 5) helps achieve
this efficiently. It finds impactful adjustment set edits and trans-
forms them to sets of causal graph edits, soliciting the correspond-
ing judgments from the user. This helps the user progressively
narrow the possible range of values for 𝐴𝑇𝐸 (𝑇,𝑂).

3.4 Log Converter

The two human-in-the-loop modules presented so far both operate
on a tabular datasetD. Although deriving some tabular dataset from
the log can be easily achieved using a log parsing algorithm [37, 115,
121], there are two usability issues not covered by this approach:

Algorithm 1 Rank candidate causes for an effect variable 𝐸.
1: function ExploreCandidateCauses(D, 𝐸)
2: X← D \ 𝐸
3: X, 𝑠𝑐𝑎𝑙𝑒 ← StandardScaleColumns(X)
4: 𝑐𝑜𝑒 𝑓 𝑠 ← LASSO(X, 𝐸)
5: 𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑_𝑐𝑜𝑒 𝑓 𝑠 ← Unscale(𝑐𝑜𝑒 𝑓 𝑠 , 𝑠𝑐𝑎𝑙𝑒)
6: 𝑟𝑒𝑠 = ∅
7: for𝑉 ∈ X do

8: if 𝑢𝑛𝑠𝑐𝑎𝑙𝑒𝑑_𝑐𝑜𝑒 𝑓 𝑠 (𝑉 ) ≠ 0 then
9: 𝑠𝑙𝑜𝑝𝑒 , 𝑝_𝑣𝑎𝑙𝑢𝑒 ← OLSLinearRegression(𝑉 , 𝐸)
10: 𝑟𝑒𝑠 ← 𝑟𝑒𝑠 ∪ {𝑉 , 𝑠𝑙𝑜𝑝𝑒, 𝑝_𝑣𝑎𝑙𝑢𝑒 }
11: return SortAscending(𝑟𝑒𝑠 , by=𝑝_𝑣𝑎𝑙𝑢𝑒)

• Opaque Variables: Most log parsing algorithms identify
variables but do not assign them meaningful names, which
users need in order to reason about them interactively.

• Per-Message Granularity: Log parsing creates a record
per log message, but users are interested in questions about
larger units: sessions, machines etc.

The Log Converter (Section 6) provides a data preparation
pipeline that addresses these issues. It utilizes Large Language
Models to derive meaningful tags for each log-derived variable,
provides the ability to aggregate log information over meaning-
ful causal units, and computes entropy-maximizing aggregates of
each variable. The resulting dataset both serves as the input to
our human-in-the-loop modules, and is the second input to Pearl’s
model for ATE calculation (alongside the graph itself).

4 CANDIDATE CAUSE RANKER

The Candidate Cause Ranker helps discover a directed path from
a sufficiently informative root cause 𝑇 to the outcome variable
of interest 𝑂 “backwards”, letting the user eventually specify the
causal question they want to answer quantitatively – the𝐴𝑇𝐸 (𝑇,𝑂).

4.1 Pruning and Ranking Candidate Causes

While using this module, the user will need to make a series of
judgments based on the returned ranking. A high-relevance rank-
ing is therefore clearly desirable. We achieve this through edge

pruning. The guiding principle is as follows: the user’s knowledge
of the system is invaluable for distinguishing which quantitative

relationships between pairs of variables are indeed manifestations
of system-related causal mechanisms, as opposed to spurious cor-
relations; however, the absence of a quantitative relationship can be
a reliable indicator that a causal relationship does not exist, as long
as the dataset is fairly representative of practical cases [45, 75].

In particular, note from Definition 2 that each variable is linearly
related to its parents, up to its own error term. As such, if we run a
multivariate regression of variable 𝐸 on the remaining variables, and
some variable 𝑉 gets assigned a zero coefficient, we can disregard
𝑉 → 𝐸: 𝑉 does not impact 𝐸 with its fluctuations, given the other
variables. If we further assume that the causal graph is sparse, a
common assumption in causal discovery literature [16, 93], we
can prune more edges by using a sparse regression algorithm. This
will drive very small coefficients, likely to be an artifact of data
availability rather than indicative of causality, to zero. This process
requires no user input and typically prunes the vast majority of
edges, since most variables are pairwise unrelated.
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Concretely, we use LASSO [98], as presented in Algorithm 1.
First, we apply LASSO on the variables, normalized by subtracting
the mean and scaling by the variance (lines 3-5). We only perform
further work for each variable 𝑉 selected by LASSO (lines 7-8). In
particular, we apply an ordinary least-squares (OLS) linear regres-
sion to each candidate causal relationship, recording the slope and
p-value (lines 6, 9-10). The results are sorted by increasing p-value
(line 11), placing the candidates with the most reliable relationships
to 𝐸 (lowest p-value) at the top. The user can then inspect each
returned candidate 𝑉 and decide whether to add 𝑉 → 𝐸 to the
causal graph. By iteratively calling ExploreCandidateCauses(𝐸),
the user can arrive at a satisfactory “root cause” variable 𝑇 .

4.2 Computational Complexity

If the threshold for convergence of the objective function is 𝜎 , a
LASSO solution can be found in 𝑂 ( |D| |V|𝜎−1/2) [10, 116], where
|D| is the number of data points and V is the set of variables. Each
regression requires𝑂 ( |D| |V|2+ |V|3) time, so the overall complexity
is𝑂 ( |D| |V|𝜎−1/2 +𝑚 |D| |V|2 +𝑚 |V|3), if LASSO finds𝑚 candidates.

5 INTERACTIVE CAUSAL GRAPH REFINER

Having found which ATE to calculate (𝐴𝑇𝐸 (𝑇,𝑂)), the user must
now focus on finding an appropriate adjustment set. The Interac-
tive Causal Graph Refiner helps the user achieve this using a
“sensitivity” approach: it finds the single-variable adjustment set
edit which will yield the maximum absolute change in 𝐴𝑇𝐸 (𝑇,𝑂).
It then maps this change to causal graph edits and solicits user
judgments for each of the edges involved in these edits.

Over time, this helps converge to the correct value of𝐴𝑇𝐸 (𝑇,𝑂),
by having the user consider graph changes in decreasing order of
impact and therefore tightening the region in which𝐴𝑇𝐸 (𝑇,𝑂) lies.
We first presented a version of this approach in previous work [62].
We present here an algorithmically refined version.

The next judgment to be solicited from the user is provided by
SolicitJudgment, presented in Algorithm 2. It takes as inputs the
current causal graph G and dataset D, alongside the variables 𝑇
and𝑂 . The user can also provide a set of 𝐹𝐼𝑋𝐸𝐷 edges F, as well as
a set of 𝐵𝐴𝑁𝑁𝐸𝐷 edges B, which should not be added to the causal
graph, or removed from it, respectively. The Interactive Causal
Graph Refiner maintains two variables across invocations of this
algorithm (line 1): 𝑒𝑑𝑖𝑡𝑠_𝑐𝑎𝑐ℎ𝑒 contains cached suggested edits
from previous invocations of the algorithm, and G𝑛𝑒𝑥𝑡 contains the
causal graph that would result if the most recent user judgment
agreed with the most recent suggested edit.

The algorithm first checks if the cache is non-empty and valid
(line 3). The cache is invalid if the user did not judge according to
the most recent suggested edit, since the causal graph edits must
all be applied to achieve the desired effect on the adjustment set.

In that case, it proceeds by calculating the ATE(𝑇,𝑂) givenG and
D and finding a valid adjustment set using existing algorithms [97]
(lines 4-5). It then considers each of the variables in D (line 8) and
calls MapRemoval (Section 5.1) or MapAddition (Section 5.2) to
find edge edits that would change that variable’s adjustment set
membership (lines 9-13). Next, it applies these edits to a copy of
G, and calculates the resulting ATE(𝑇,𝑂) and the associated ATE
impact (lines 14-16). It keeps track of the edits that produce the

Algorithm 2 Return the next judgment to be solicited, based on
the adjustment set edit that would impact 𝐴𝑇𝐸 (𝑇,𝑂) maximally.
1: State across invocations: 𝑒𝑑𝑖𝑡𝑠_𝑐𝑎𝑐ℎ𝑒 , G𝑛𝑒𝑥𝑡
2: function SolicitJudgment(G, D,𝑇 ,𝑂 , F, B)
3: if 𝑒𝑑𝑖𝑡𝑠_𝑐𝑎𝑐ℎ𝑒 = ∅ or G ≠ G𝑛𝑒𝑥𝑡 then

4: 𝑎𝑡𝑒 ← ATE(G, D,𝑇 ,𝑂)
5: 𝑏𝑎𝑠𝑒_𝑎𝑑 𝑗_𝑠𝑒𝑡 ← AdjSet(G,𝑇 ,𝑂)
6: 𝑏𝑒𝑠𝑡_𝑒𝑑𝑖𝑡𝑠 ← ∅
7: 𝑏𝑒𝑠𝑡_𝑎𝑡𝑒_𝑖𝑚𝑝𝑎𝑐𝑡 ← 0
8: for𝑉 ∈ (Nodes(G) \ {𝑇,𝑂 }) do
9: S← ∅
10: if 𝑉 ∈ 𝑏𝑎𝑠𝑒_𝑎𝑑 𝑗_𝑠𝑒𝑡 then
11: S←MapRemoval(G, D,𝑇 ,𝑂 , F, B,𝑉 )
12: else

13: S←MapAddition(G, D,𝑇 ,𝑂 , F, B,𝑉 )
14: G′ ← ApplyEdits(G, S)
15: 𝑎𝑡𝑒′ ← ATE(G′ , D,𝑇 ,𝑂)
16: 𝑎𝑡𝑒_𝑖𝑚𝑝𝑎𝑐𝑡 ← |𝑎𝑡𝑒′−𝑎𝑡𝑒 |

|𝑎𝑡𝑒 |
17: if 𝑎𝑡𝑒_𝑖𝑚𝑝𝑎𝑐𝑡 > 𝑏𝑒𝑠𝑡_𝑎𝑡𝑒_𝑖𝑚𝑝𝑎𝑐𝑡 then

18: 𝑏𝑒𝑠𝑡_𝑒𝑑𝑖𝑡𝑠 ← S
19: 𝑏𝑒𝑠𝑡_𝑎𝑡𝑒_𝑖𝑚𝑝𝑎𝑐𝑡 ← 𝑎𝑡𝑒_𝑖𝑚𝑝𝑎𝑐𝑡

20: 𝑒𝑑𝑖𝑡𝑠_𝑐𝑎𝑐ℎ𝑒 ← 𝑏𝑒𝑠𝑡_𝑒𝑑𝑖𝑡𝑠
21: 𝑒𝑑𝑖𝑡 ← PopHead(𝑒𝑑𝑖𝑡𝑠_𝑐𝑎𝑐ℎ𝑒)
22: G𝑛𝑒𝑥𝑡 ← ApplyEdits(G, 𝑒𝑑𝑖𝑡 )
23: return 𝑒𝑑𝑖𝑡

Algorithm 3 Suggest causal graph edits that would remove a vari-
able from the adjustment set.
1: functionMapRemoval(G, D,𝑇 ,𝑂 , F, B,𝑉 )
2: S← ∅
3: if 𝑉 ∈ An(𝑇 ) then
4: B, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← BreakPaths(G, F, {𝑉 },𝑇 )
5: if not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then

6: return ∅
7: S← B
8: T← De(𝑇 ) ∪ {𝑇 }
9: T← SortAscending(T, by= DirPathLengthFrom(𝑇 ))
10: for𝑊 ∈ T do

11: if𝑊 → 𝑉 is not 𝐵𝐴𝑁𝑁𝐸𝐷 then

12: if (𝑉 →𝑊 ) ∉ G then

13: S← S∪ (𝑊 → 𝑉 , Add)
14: else

15: S← S∪ (𝑉 →𝑊 , Flip)
16: return S
17: return ∅

maximum ATE impact and caches them (lines 6-7, 17-20). At this
point a valid cache exits, so the algorithm removes its first element
and computes the resulting graph, if the edit is applied (lines 21-22).
The edit is then returned for the user to judge (line 23).

The hardest part is deriving a set of causal graph edits that
corresponds to the desired effect on the adjustment set – i.e. the
functionality implemented by MapRemoval and MapAddition. In
general, multiple such sets may exist that achieve the same effect –
e.g. removing a certain variable from the adjustment set. We present
one possible approach to finding such a set, based on Definition 6.

5.1 The MapRemoval Algorithm

MapRemoval (Algorithm 3) finds a set of edge edits that ensures
that 𝑉 is not included in the adjustment set. It achieves this by
making 𝑉 a descendant of 𝑇 , which means that 𝑉 violates the first
condition of Definition 6. We consider two cases:

Case 1: 𝑉 ∉ An(𝑇 ). 𝑉 can be easily made a descendant of 𝑇 by
adding a directed edge from 𝑇 or one of its descendants (lines 8,
12-16). We suggest the option that minimizes the directed distance
from 𝑇 (lines 9-10) while not being 𝐵𝐴𝑁𝑁𝐸𝐷 (line 11).
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Algorithm 4 Suggest causal graph edits that would include a vari-
able in the adjustment set.
1: functionMapAddition(G, D,𝑇 ,𝑂 , F, B,𝑉 )
2: S← ∅
3: if 𝑉 ∈ De(𝑇 ) ∨𝑉 ∈ De(𝑌 ) then
4: B, 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 ← BreakPaths(G, F, {𝑇 , 𝑌 },𝑉 )
5: if not 𝑠𝑢𝑐𝑐𝑒𝑠𝑠 then

6: return ∅
7: S← B
8: S← S∪ {(𝑉 → 𝑇 , Add), (𝑉 → 𝑌 , Add)}
9: return S

Algorithm 5 Break each directed path from one of sources to 𝑠𝑖𝑛𝑘 .
1: function BreakPaths(G, F, sources, 𝑠𝑖𝑛𝑘)
2: reachable_from_sources← BFS(G, from=sources)
3: sink_reachable_from← BFS(ReverseGraph(G), from=𝑠𝑖𝑛𝑘)
4: nodes_to_keep← reachable_from_sources ∩ sink_reachable_from
5: G𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ← RemoveNodes(G, Nodes(G) - nodes_to_keep)
6: B← ∅
7: 𝑞𝑢𝑒𝑢𝑒 ← sources
8: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← sources
9: while 𝑞𝑢𝑒𝑢𝑒 ≠ ∅ do
10: 𝑉 ← Deqeue(𝑞𝑢𝑒𝑢𝑒 )
11: if 𝑉 = 𝑠𝑖𝑛𝑘 then

12: return ∅, False
13: for𝑊 ∈ Children(G𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ,𝑉 ) do
14: if (𝑉 →𝑊 ) ∉ F then

15: B← B ∪ {𝑉 →𝑊, Remove}
16: else if𝑊 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then

17: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑉 }
18: Enqeue(𝑞𝑢𝑒𝑢𝑒,𝑊 )
19: return B, True

Case 2: 𝑉 ∈ An(𝑇 ). In this case, making 𝑉 a descendant of 𝑇
would create a cycle. To fix this, we must first remove𝑉 fromAn(𝑇 )
by calling BreakPaths (explained in Section 5.3) to find edits break-
ing all directed paths from 𝑉 to 𝑇 (lines 3-4, 7). If BreakPaths can-
not find such edits, MapRemoval returns, since we cannot include
𝑉 in De(𝑇 ) without creating a cycle (lines 5-6).

5.2 The MapAddition Algorithm

MapAddition (Algorithm 4) finds a set of edge edits that ensures
that𝑉 is included in the adjustment set. It achieves this by creating
a new path 𝑇 ← 𝑉 → 𝑂 , which must be blocked in order to satisfy
the second condition of Definition 6 and can only be blocked by
including 𝑉 in the adjustment set. There are, again, two cases:

Case 1. 𝑉 ∉ (De(𝑇 ) ∪ De(𝑌 )). We can directly create the path
described above by adding edges 𝑉 → 𝑇 and 𝑉 → 𝑌 (lines 8-9).

Case 2.𝑉 ∈ (De(𝑇 ) ∪De(𝑌 )). We first call BreakPaths to break
these descendant relationships, if possible (lines 3-7).

5.3 The BreakPaths Algorithm

Both MapRemoval and MapAddition may require identifying a
set of graph edits that breaks each directed path in a set of directed
paths. One such set is a minimum cut in the subgraph consisting
only of these paths, discoverable in time 𝑂 ( |V|2 |E|) using Dinitz’s
algorithm [24]. However, since we do not need the set to be minimal,
we present a more efficient algorithm, shown in Algorithm 5.

In particular, we start by identifying the sub-graph G𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 ,
consisting only of directed paths from any of the nodes in sources
to 𝑠𝑖𝑛𝑘 . We detect all the nodes that both are reachable from the
sources and from which 𝑠𝑖𝑛𝑘 is reachable, and remove all other

nodes (and their incident edges) from G (lines 2-5). We then apply
a variant of breadth-first search: we initialize a queue and visited
list based on sources (lines 7-8) and start proecssing elements from
the queue until it is empty (lines 9-10). For each processed element,
we attempt to remove all directed edges to its children, if they are
not 𝐹𝐼𝑋𝐸𝐷 (lines 6, 13-15). If some edge among them is indeed
fixed, we defer the breaking of that path by adding its children to
the queue (lines 16-18). If we reach the sink node, it means that
some directed path only contained 𝐹𝐼𝑋𝐸𝐷 edges, so breaking it is
infeasible; we therefore return an empty set of edits and a boolean
False value (lines 11-12). Otherwise, once the queue is empty, we
return the identified edits and a True value (line 19).

5.4 Computational Complexity

When not using the cache, SolicitJudgment loops over 𝑂 ( |V|)
variables, calling MapRemoval or MapAddition in each iteration.
Each of those algorithms calls BreakPaths, which involves three
breadth-first searches (lines 2, 3 and 7-18) of complexity 𝑂 ( |V| +
|E|) = 𝑂 ( |V|2). MapRemoval also includes a sort by distance, also
implementable using a breadth-first search in 𝑂 ( |V|2), and a loop
of complexity 𝑂 ( |V|). Each of MapRemoval and MapAddition
therefore have complexity 𝑂 ( |V|2). SolicitJudgment then calls
ATE, which involves a linear regression with𝑂 ( |D| |V|2 + |V|3). The
full complexity of SolicitJudgment is then 𝑂 ( |D| |V|3 + |V|4).

6 LOG CONVERTER

The two human-in-the-loop modules operate on a tabular dataset
D. We will now describe a pipeline to transform a log into such a
dataset efficiently. This dataset also serves as the second input to
Pearl’s model for ATE calculation (alongside the causal graph).

6.1 Log Parsing

Text logs must first be parsed into a table of variable observations:

Definition 8 (Parsed Table). The parsed table includes a row
per log message and a column per log-derived parsed variable.

To generate the parsed table, we go through five steps:
(1) Users can specify a log message prefix (e.g., a timestamp

regular expression), to collate multi-line log messages.
(2) Users can pass zero or more regular expressions to parse

formatted variables (e.g IDs) from each log message.
(3) We use an off-the-shelf parsing algorithm [37, 115, 121] to

extract the rest of the parsed variables from their log tem-

plates. Any “classical” [26, 38, 39, 42] or learning-based [7,
19, 23, 57, 64, 67, 96, 106] log parsing algorithm is acceptable,
as long as it leads to a parsed table that conforms with Def-
inition 8. At times, log parsing algorithms may incorrectly
map semantically different variables to the same parsed
variable – our implementation provides functionality for
the user to correct this, if needed.

(4) We also add a binary indicator variable per log template, to
count the rate of incidence of each template.

(5) Some parsed variables are uninteresting for causal inference
– e.g. identifiers. We discard any categorical parsed variable
where the number of distinct values exceeds 15% of the
variable’s occurrences, similar to past work [108].
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6.2 Variable Tagging

For users to reason about parsed variables, the variables must
have human-understandable names. We will call these names tags.
For variables parsed using a regular expression, the user provides a
tag together with the regular expression. For each of the remaining
parsed variables, we consult three sources to generate a tag:

(1) The three tokens preceding the variable in the log template,
if the variable is preceded by ‘:’ or ‘=’ (possibly with an
interspersed opening quote).

(2) GPT-3.5-Turbo (gpt-3.5-turbo-1106) [73], providing (a) an
example message where the variable appears, (b) the 3 to-
kens that precede the variable (c) 4 additional example
values for the variable from other log messages of the same
template. While our prompt (available online [60]) delivers
acceptable results, we acknowledge that the prompting tech-
nique and/or model can affect output quality [49, 50, 54, 55].
Fully exploring this problem is not a focus of our work.

(3) GPT-4 (gpt-4-0613) [71], using the same prompt as above.
As soon as one source produces a tag, we move on to the next

parsed variable. If no source produces a tag, we assign a unique
string of symbols. Users can later edit these tags manually.

Sometimes, distinct parsed variables may be assigned the same
tag – e.g., several may be called “port”, from different contexts. We
use the tag only for the first parsed variable to obtain it and use a
unique system-generated variable name for the rest.

6.3 Causal Unit Definition

The rows of the parsed table, one per log message, are not ideal
for causal inference. We instead need a row per “data point” as
defined for the question at hand (e.g. per session). We achieve this
by bundling groups of log messages together into causal units.

Since the right choice of causal unit inherently depends on the
question the user is interested in, we defer to them for a causal
unit definition. Such a definition consists of a parsed variable𝑊 ,
on the value of which the units will be based, and optionally a
discretization function (e.g., a binning function) if𝑊 is continuous.

However, not every choice of causal unit is permissible, because
Definition 1 requires the Stable Unit Treatment Value Assumption
(SUTVA) [80]: the outcome of each unit should not depend on the
treatments of other units. For example, processes may be unsuitable
causal units if they share hardware: process 𝐴’s work could impact
process 𝐵’s latency. We defer to the user’s knowledge of the system
to ensure that this condition is satisfied.

6.4 Aggregation

There can be a varying number of values for each parsed variable
in each causal unit. For example, if Alex defines a causal unit per
session, the number of query latency readings for each session vary.
To make causal units comparable, we must replace varying-size
sets of values with the same value(s) per causal unit:

Definition 9 (Prepared Table). The prepared table includes
one row per causal unit and one column per prepared variable.

Each prepared variable is derived from some parsed variable, its
base variable, by using an aggregation function (e.g. the mean) to

reconcile the values within each causal unit. If the user is confident
that a certain aggregation function is best for a particular parsed
variable, they can explicitly specify it. Otherwise, one cannot auto-
matically find the most useful aggregation function for each parsed
variable a priori, since the downstream ATE question is not yet
known. Even if it were, optimizing for it could lead to overfitting,
generating variables that would be less informative for adjacent
questions the user may later pose. We therefore approximate this
objective by trying to maximize the information captured by each
prepared variable. We achieve this in two steps.

First, we compute multiple aggregates of each parsed variable
𝑊 ∈ W, based on its type. For numerical variables, we consider
A𝑊 = [𝑚𝑎𝑥,𝑚𝑖𝑛,𝑚𝑒𝑎𝑛]. For categorical variables, we consider
A𝑊 = [𝑓 𝑖𝑟𝑠𝑡, 𝑙𝑎𝑠𝑡,𝑚𝑜𝑑𝑒], where 𝑓 𝑖𝑟𝑠𝑡 (𝑊 ) and 𝑙𝑎𝑠𝑡 (𝑊 ) return the
value of𝑊 that appeared earliest or latest within each causal unit,
respectively. When calculating these functions, we ignore all miss-
ing values in their inputs.

Then, for a parsed variable𝑊 , we let 𝑅(𝑊,𝑎) be the range of
𝑎(𝑊 ), 𝑎 ∈ A𝑊 . Among the prepared variables with𝑊 as their base
variable, we keep the one that maximizes empirical entropy; that
is, we keep the one resulting from 𝑎∗

𝑊
(𝑊 ), 𝑎∗

𝑊
∈ A𝑊 , where:

𝑎∗𝑊 = argmax
𝑎∈A𝑊

∑︂
𝑥∈𝑅 (𝑊,𝑎)

−𝑝 (𝑥)𝑙𝑜𝑔2 (𝑝 (𝑥))

We finally one-hot encode any categorical variables in this set.

6.5 Imputation

In each causal unit, there may be parsed variables with no obser-
vations. Ignoring causal units with missing values can result in
selection bias. Luckily, imputing missing values in the prepared
table is often possible, since the missing values are interpretable.
We can impute a default based on domain knowledge, which is easy
to tap now that log information is organized along causal units.
Since the default may differ per prepared variable, we let the user
specify it if they so wish, performing no imputation by default.

6.6 Computational Complexity

Log Parsing. Depends on the chosen existing parsing algorithm.
Variable Tagging. For tagging, we require𝑂 (𝑀) time and𝑂 ( |W|)
space for the metadata fed into the GPT prompts, where𝑀 is the
number of log messages andW is the set of parsed variables. De-
pending on the choice of log parsing algorithm, this information
can also be collected during parsing. We then require an additional
𝑂 ( |W|) time and up to 2|W| GPT calls to compute the tags, which
take𝑂 ( |W|) space to store. Since tagging is a per-variable operation,
linear complexity is optimal for this problem.
Causal Unit Definition. Defining causal units takes 𝑂 (1) time.
Aggregation. Aggregation takes 𝑂 ( |C| |W|𝑇𝑚𝑎𝑥 ) time, where C is
the set of causal units, W is the set of parsed variables and 𝑇𝑚𝑎𝑥 is
the dominant time complexity among the aggregation functions.
Among the defaults,𝑚𝑜𝑑𝑒 dominates with𝑂 ( |𝐶 |𝑙𝑜𝑔|𝐶 |) for a causal
unit with |𝐶 | elements. The time complexity of one-hot encoding is
𝑂 ( |C| |W𝑐𝑎𝑡 |), whereW𝑐𝑎𝑡 is the set of categorical parsed variables.
Imputation. Imputation with fixed values takes𝑂 (( |C| |W|) time.
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7 PROTOTYPE SYSTEM: LOGOS

We implemented our framework in LOGos, using ∼2850 lines of
Python. Our code, including LLM prompts, is available online [60].
An earlier prototype was presented as Sawmill [61], but we revised
the name because of a name clash with a different product [43]. For
log parsing, we used Drain [39], based on an implementation by
the authors of LogBERT [32]. Drain uses a fixed-depth parse tree in
an online streaming manner that requires a single pass over the log.
For variable pruning, we used LASSO from scikit-learn [77]. For
estimating ATEs in GetATE, we used “backdoor.linear_regression”
from DoWhy [12, 87], an open-source Python library for causality.

8 EVALUATION

After presenting our experimental setting (Section 8.1), we evaluate
three claims about our framework, as implemented in LOGos, and
the performance of the Log Converter:

• LOGos’sCandidate CauseRanker ranks the ground truth
root causes higher than the baselines while remaining in-
teractive, addressing Problem 1 (Section 8.2).

• LOGos’s Interactive Causal Graph Refiner quickly leads
the user to a graph onwhich𝐴𝑇𝐸 (𝑇,𝑂)matches the ground
truth, addressing Problem 2 (Section 8.3).

• The Log Converter scales gracefully (Section 8.4).

8.1 Experimental Setting

8.1.1 Environment. All experimentswere run on amachine equipped
with two 20-core 2.10 GHz Intel Xeon Gold 6230 CPUs [44] and 256
GiB of memory, running Linux 6.9.7-arch1-1.

8.1.2 Metrics. Our evaluation focuses on the following metrics:
Average Precision (Candidate Cause Ranker, higher is better).

Since this module addresses Problem 1, we evaluate it using the
average precision of its output ranking 𝑟 , defined as:

𝐴𝑃 (𝑟 ) =
∑︁Length(𝑟 )
𝑖=1 PrecisionAmongTop(𝑖) · IsPositive(𝑖)

# Ground Truth Positive Elements
Number of Judgments (Interactive Causal Graph Refiner,

lower is better). Leveraging the Absolute Relative Error [2] in
ATE, we report the number 𝑛 of judgments to reach G𝑛 for which:

𝐴𝑅𝐸_𝐴𝑇𝐸 (𝑛) =
|︁|︁|︁|︁𝐴𝑇𝐸G𝑛 (𝑇,𝑂) −𝐴𝑇𝐸GReal (𝑇,𝑂)𝐴𝑇𝐸GReal (𝑇,𝑂)

|︁|︁|︁|︁ ≤ 10−5

We selected this metric instead of measuring the structural accuracy
of the causal graph because a fully correct graph is not necessary
to estimate the ATE correctly, as explained in Section 1.
Latency (lower is better).We evaluate whether the latency of our
two human-in-the-loop modules is indeed interactive, as well as
how the Log Converter scales to more complex logs.
8.1.3 Baselines. We compare LOGos to two baselines:
Regression. Produce suggestions using linear regressions.

• For Candidate Cause Ranking: Remove prepared vari-
ables with zero variance and normalize the rest to zero
mean and unit variance. Regress the effect variable 𝐸 on
the normalized data and rank the regressors by decreasing
(normalized) absolute regression coefficient.

Table 2: Statistics about our evaluation datasets.

Dataset Size Parsed Prepared
Lines Bytes Variables Variables

PostgreSQL 507,648 20,587,286 71 172
Proprietary 1,223,000 237,048,470 121 120
XYZ 𝑉 =10 1,000,000 62,458,855 12 21

𝑉 =100 1,000,000 64,791,158 102 201
𝑉 =1000 1,000,000 65,943,179 1002 2001

• For Interactive Causal Graph Refinement: For each
variable 𝑉 in the current causal graph, for each of its non-
neighbors𝑊 , regress 𝑉 on𝑊 . Solicit a user judgment for
the pair with the highest absolute regression coefficient.
Before running the regressions, normalize as above. Cache
regression results and continue soliciting judgments in
ranked order while the user makes no changes to the graph.

LangModel. Produce suggestions using a large language model
(gpt-4o-mini-2024-07-18) [72]. Prompts available online [60].

• For Candidate Cause Ranking: Prompt the model with
the tags of all prepared variables and up to 3 unique example
values for each, and have it rank causes for 𝐸.

• For Interactive Causal Graph Refinement: Prompt the
model with the tags of all prepared variables, the edges in
the current causal graph, and the pair (𝑇 , 𝑂). Ask it to rank
pairs of variables based on their relevance to 𝐴𝑇𝐸 (𝑇,𝑂).
Solicit a user judgment for the pair ranked first and cache
the rest. Continue soliciting judgments in ranked order as
long as the user makes no changes to the graph.

8.1.4 Datasets. Open-source collections of logs exist [120], but to
evaluate LOGos we also need access to the ground-truth causal ef-

fects in the log-producing system, which are generally not available.
We therefore develop three new datasets, summarized in Table 2,
ranging from instrumenting a real system, to augmenting a real-
world log with a known causal relationship, to generating synthetic
log data for stress-testing. This strategy was also used by other
causality-in-systems works, e.g., CausalSim [4]. Where applicable,
we provide these datasets with our code [60]. The last two columns
of Table 2 refer to the variables produced at different stages by the
Log Converter. For the human-in-the-loop modules, we use as
inputs the prepared variables for each dataset.
PostgreSQL (Real-world). As mentioned in Section 2.2, this
dataset emulates the situation of a database administrator who
wants to determine which parameter is causing queries to be slow.
We set up PostgreSQL 14 on an t2.2xlarge instance on AWS EC2 [86]
and configured it to log the latency of each query. We then loaded
the TPC-DS benchmark [78] for scale factor 1 and executed a work-
load consisting of sequentially issuing one query per TPC-DS tem-
plate, excluding 4 long-running templates (1, 4, 11 and 74).

We ran this workload 64 times, once per combination of the
parameter settings in Table 3, each in a separate session. These
parameters both impact query latency and do not require a Postgres
service restart to reset. For each of the 32 parameter combinations
where the product of work_mem and max_parallel_workers is 256,
we then ran the workload once more, leading to 96 total runs. For
a randomly selected run, the aforementioned product is therefore
more likely to be 256, so we have confounding: work_mem affects
both query latency and the value of max_parallel_workers.
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Table 3: Parameter settings for PostgreSQL.

Parameter Values Parameter Values
work_mem 128, 256 max_parallel_workers 1,2
seq_page_cost 1, 1000 maintenance_work_mem 32768, 65536
random_page_cost 4, 1000 effective_cache_size 262144, 524288

Proprietary (Real-world with post-processing).We wanted to
process a log from another complicated piece of software that was
as realistic as possible, but for which we knew the ground truth.
We thus post-processed a real-world log for an HTTP-based client
/ server application from a large company, with different messages
in the log generated by different parts of the software stack. Clients
in this application periodically contact the server to perform opera-
tions. We kept the real-world syntax of this file but synthetically
introduced a bug. We generated logs for 1,000 “users”, to whom we
assigned unique IDs, included in each of their log messages. We
designated a fraction of the users 𝐹 as “faulty”. For each non-faulty
user, we generated a log identical to the original, except that HTTP
responses have probability 𝑝𝑛 = 10% of reporting error code 401
instead of success code 200. There are 36 such messages in the
original 1223-line log. For each faulty user, we equivalently defined
a probability 𝑝 𝑓 > 𝑝𝑛 and we indicated their OS as iOS 15.0 in the
log message that reports it, compared to iOS 14.3 in the original log.
We generated 9 experimental scenarios by setting 𝐹 to 50%, 10% or
1%, while 𝑝 𝑓 is set to 100%, 50% or 20%.
XYZ (Synthetic). Finally, we created a family of synthetic logs
to evaluate the limits of our framework’s ability to recover and
adjust for confounding. We wanted a synthetic log so we could test
how well LOGos can work even in the face of a harder-to-discern
causal effect. We did that by carefully adjusting the level of noise
and the number of irrelevant variables. Each XYZ log contains 1000
log messages for each of 1000 machines. Each message includes an
artificial timestamp, a machine identifier and one of 𝑉 variables
chosen uniformly at random. We ensure every variable is reported
at least once. While the value of most variables is drawn uniformly
at random between 0 and 100 each time the variable is reported,
the values of 3 special variables (𝑋 , 𝑌 and 𝑍 ) are not:

• 𝑍 is drawn uniformly between 0 and 10 once per machine.
• 𝑋 is equal to𝑋𝑚 +𝑍 , with added Gaussian noise with 𝜎 = 𝑅.

𝑋𝑚 is drawn once per machine, uniformly at random.
• 𝑌 is equal to 2𝑋 +3𝑍 , with added Gaussian noise with 𝜎 = 𝑅.

As such, 𝐴𝑇𝐸 (𝑋,𝑌 ) = 2 after adjusting for 𝑍 . We generated 9
scenarios by setting 𝑉 to 10, 100 or 1000, and 𝑅 to 1, 5 or 10.

8.2 Candidate Cause Ranking

Candidate Cause Ranking: Claim
LOGos’s Candidate Cause Ranker ranks the ground truth root
causes higher than the baselines while remaining interactive.

We begin our evaluation by assessing the ability of the Candi-
date Cause Ranker to produce high-quality rankings of candidate
causes, therefore addressing Problem 1. Figure 3 presents the aver-
age precision results, while Figure 4 the mean latency results.
8.2.1 PostgreSQL. For this dataset, we inquired for candidate
causes of query latency, represented by the prepared variable duration

(a) PostgreSQL (b) Proprietary (c) XYZ

Figure 3: Average precision for Candidate Cause Ranking

(higher is better).

(a) PostgreSQL (b) Proprietary (c) XYZ

Figure 4: Candidate Cause Ranking latency (lower is better).

mean, and we aimed to recover the prepared variables associated
with the two parameters involved in confounding: work_mem mean
and max_parallel_workers mean. As shown in Figure 3a, the can-
didate cause ranking produced by LOGos achieved superior average
precision in this task, beating Regression by 1.08× and LangModel

by 1.54×. From Figure 4a we see that Regression offered a much
lower latency, but the sub-second latency offered by LOGos was
still firmly within the interactive range we are targeting.
8.2.2 Proprietary. For this dataset, we inquired for candidate
causes of failure codes in response to HTTP requests, represented
by the prepared variable code mean, and we aimed to recover the
prepared variable associated with the OS version, tagged version
mean. We present mean results over the 9 experimental scenarios of
this dataset. As shown in Figure 3b, LOGos outperformed Regres-

sion by 1.28× and LangModel by 18× in terms of average precision.
The latency insight from Figure 4b is again that Regression offered
very low latency, but LOGos remained interactive.
8.2.3 XYZ. Finally, for XYZ, we inquired for candidate causes of
Y mean, and we aimed to recover X mean as the candidate cause.
We present mean results over the 9 experimental scenarios of this
dataset. As shown in Figure 3c, LOGos once again led in average
precision, beating Regression by 1.66× and LangModel by 13.47×.
In terms of latency, Figure 4c once more shows that Regression
produced results the fastest, but LOGos remained interactive.

Candidate Cause Ranking: Summary
The average precision of the Candidate Cause Ranker was
1.08×–1.66× higher than Regression and 1.54×–18× higher than
LangModel. A call to the Candidate Cause Ranker required on
average under 4s, which remained interactive, although slower
than Regression. LangModel was at least 40% slower than LOGos.
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Figure 5: Ground truth causal graphs for Section 8.3. The

corresponding starting graphs lack the dashed edges.

(a) PostgreSQL (b) XYZ

Figure 6: Number of judgments required to converge to

ground truth ATE for Interactive Causal Graph Refinement

(lower is better).

8.3 Interactive Causal Graph Refinement

Interactive Causal Graph Refinement: Claim
LOGos’s Interactive Causal Graph Refiner quickly leads the
user to a graph on which 𝐴𝑇𝐸 (𝑇,𝑂) matches the ground truth.

8.3.1 PostgreSQL. We calculated the ground truth value of the
𝐴𝑇𝐸 (max_parallel_workers, duration) on the graph shown in
Figure 5a (including the dashed edges). Then, we removed the
dashed edges to derive a starting graph. For each available method,
we responded to each judgment it solicited with the appropriate
edge status based on the ground truth causal graph, and measured
how many judgments were solicited before the ATE converged to
its ground truth value. As seen in Figure 6a, LOGos was able to
immediately zero in on the two dashed edges and solicit judgments
for them, reaching the ground truth graph (and thus the ground
truth ATE) in only 2 judgments. Regression instead required 5
judgments (2.50×more) to achieve the same goal, while LangModel

required 11 judgments (5.50× more).
Moreover, as shown in Figure 7a, LOGos required only 1.90 s

of total processing time for the 2 judgment solicitations, firmly
within the interactive realm. While Regression was also interactive,
LangModel required 5.76 s in total, 3.04× more than LOGos.
8.3.2 XYZ. We calculated the ground truth𝐴𝑇𝐸 (X mean, Y mean)
on the graph of Figure 5b (incl. the dashed edges). Then, we re-
moved the dashed edges to derive a starting graph and followed
the same strategy as in Section 8.3.1. We present mean results over
the 9 experimental scenarios of this dataset. As seen in Figure 6b,
LOGos again outperformed the competition, requiring a perfect
2 judgment solicitations to identify the 2 dashed edges and help
the user reconstruct the ground truth graph. Regression instead re-
quired 3.22 judgments on average (1.61×more) to achieve the same
goal, while LangModel required 33.67 judgments (16.83× more).

(a) PostgreSQL (b) XYZ

Figure 7: Cumulative latency for Interactive Causal Graph

Refinement (lower is better).

(a)𝑉 = 10 (b)𝑉 = 100 (c)𝑉 = 1000

Figure 8: Figure 7b split by value of 𝑉 (lower is better).

As shown in Figure 7b, LOGos required on average 13.87 seconds
of total processing time across the 2 judgment solicitations. How-
ever, as the breakdown by value of 𝑉 in Figure 8 shows, this was
mainly caused by the deliberately computationally intensive ex-
perimental scenarios with 𝑉 = 1000, which contain over 10× more
prepared variables compared to PostgreSQL and Proprietary (see
Table 2). LOGos offered interactive latency otherwise. While Re-
gression was interactive across experimental settings, LangModel

required 18.44 seconds in total on average, 1.33×more than LOGos.

Interactive Causal Graph Refinement: Summary
The Interactive Causal Graph Refiner required 1.61×–2.50×
fewer judgments than Regression and 5.50×–16.83× fewer than
LangModel. A call to the Interactive Causal GraphRefinerwas
interactive for most datasets, although slower than Regression.
LangModel was at least 33% slower than LOGos.

8.4 Log Converter Scaling

Log Converter Scaling: Claim
The Log Converter scales gracefully to more complex logs.

We close with an evaluation of the Log Converter as imple-
mented in our prototype of LOGos. In particular, we evaluated
the scalability of Log Parsing (Section 6.1) and Aggregation (Sec-
tion 6.4), which present the greatest algorithmic interest. Recall
that for Log Parsing we rely heavily on Drain [39] (Section 7).

We used synthetic datasets defined based on 4 parameters: 𝐿,
𝑆 , 𝑉 and 𝐶 . 𝐿 represented the length of the log. Each log message
included 2 +𝑉 +𝐶 space-separated tokens. The first token was a
line ID of the form line_𝑖 , where 𝑖 was the index of the message.
The second token was a string token of the form s_ 𝑗 , where 𝑗 was
a uniformly random integer between 1 and 𝑆 , inclusive. The next
𝑉 tokens were numerical variables, each of which took the value 𝑖 .
The last 𝐶 tokens were constants equal to 0. To sweep log lengths,
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(a) Log Parsing (b) Aggregation

Figure 9: Log Converter scaling by log length.

(a) Log Parsing (b) Aggregation

Figure 10: Log Converter scaling by number of templates.

we fixed 𝑆 = 10, 𝑉 = 1 and 𝐶 = 10, and swept 𝐿 over powers of
10 from 101 to 106. To sweep the number of templates, we fixed
𝐿 = 104,𝑉 = 1 and𝐶 = 10, and swept 𝑆 over powers of 10 from 101
to 104. To sweep the fraction of variables, we fixed 𝐿 = 104, 𝑆 = 10
and 𝐶 = 100 −𝑉 , and swept 𝑉 over multiples of 10 from 10 to 100.

We parsed each log using a regular expression for line_ID and
set the Drain similarity threshold so one log template per value of
the string token in each experiment. As Figures 9a, 10a and 11a
show, the time taken by log parsing scaled linearly with each of
the swept measures of the complexity of a log. We then aggregated
each log into causal units determined by line_ID. Figures 9b, 10b
and 11b show the results, which again scale linearly.

Log Converter Scaling: Summary
Log Parsing and Aggregation in the Log Converter scaled lin-
early with three measures of the complexity of a log: length,
number of templates, and fraction of tokens that are variables.

9 RELATEDWORK

9.1 Causality and Systems

Managing failures is crucial for large system operators. Past work
has used formulations including failure classification [6], failing
component detection [124], troubleshooting guide suggestion [46],
job runtime impact analysis [123] and risk simulation [105]. Some
existing work has also leveraged causality [1, 4, 29, 31, 34, 45, 68, 69].
Causal inference has also been used for other data management
tasks more broadly [3, 28, 59, 84, 89, 109, 119]. However, logs have
been under-explored as a data source, with most past work simply
focusing on outlier detection [27, 32, 83]. One work does map out-
liers to their causes [13], but it requires a fully externally provided
causal graph. The outlier detection framing also fails to flag longer-
term problems (e.g. some users being consistently slower). Other
works impose additional restrictions, like source code access [112],
platform-specificity [118] or fine-grained hardware-supported log-
ging [18]. On the commercial side, platforms like Splunk [95] and

(a) Log Parsing (b) Aggregation

Figure 11: Log Converter scaling by fraction of variables.

Datadog [22] provide log access interfaces, but no tailored support
for causal inference. Datadog can identify some “root causes” for
failures [21], but these verdicts appear driven just by temporal
relationships, similar to Falcon [68] and Horus [69].

9.2 Causal Discovery

Causal discovery has seen much prior research [30, 90, 94, 103, 114,
122]. Some existing algorithms are “constraint-based”, like PC [93],
FCI [94], GES [94] and variants of each. Others, like LiNGAM [90],
estimate the parameters of Functional Causal Models (FCMs). Each
algorithm makes assumptions about the data [30], some of which
are false for logs – e.g. functional dependencies yield singular
correlation matrices. A text-mining approach based on the vari-
able names may also be possible if such names are informative
enough [35, 36, 40], most recently by leveraging large language
models (LLMs) [5, 8, 9, 51, 56, 58, 66, 99, 102, 110]. Despite often be-
ing impressive, LLMs still exhibit unpredictable failure modes that
hinder their general adoption for causality [51]. Moreover, LLMs
rely on publicly available textual information to derive their an-
swers, whichmay be severely limitedwhen dealingwith log-derived
variables particular to a specific architecture and deployment.

10 CONCLUSION AND LIMITATIONS

In this work, we presented a novel human-in-the-loop framework
for applying causal inference on log data. This endeavor is chal-
lenging because log data suffer from three problems: Functional
Dependencies, Large Number of Variables and Biased Data Col-
lection. Our framework combines novel algorithmic approaches
with judicious use of human input to mitigate these problems. Our
prototype, LOGos, accurately and efficiently calculates Average
Treatment Effects among log variables, in both real-world and syn-
thetic logs, while scaling linearly with the complexity of a log. This
work can spur further exploration of applying causality in systems.

Although powerful, our approach has two limitations. First, we
currently rely on both the correctness and the coverage of the input
log data. Still, our approach is flexible enough to integrate more data
sources, like code or documentation, using preprocessing modules
analogous to the Log Converter. Second, since we include a human
in the loop, some user domain knowledge is necessary to derive
a high-quality causal model from our framework’s suggestions.
We believe the required level of expertise is appropriate for our
intended audience (engineers administering large systems).
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