
TenGraph: A Tensor-Based Graph�ery Engine
Guanghua Li

HKUST (Guangzhou)
Guangzhou, China

gli945@connect.hkust-gz.edu.cn

Hao Zhang
Huawei Cloud Database

Innovation Lab
Beijing, China

zhanghaowuda12@gmail.com

Xibo Sun
HKUST

Hong Kong, China
xsunax@connect.ust.hk

Qiong Luo∗
HKUST and HKUST (Guangzhou)
Guangzhou and Hong Kong, China

luo@cse.ust.hk

Yuanyuan Zhu∗
Wuhan University
Wuhan, China

yyzhu@whu.edu.cn

ABSTRACT
We propose a novel tensor-based approach to in-memory graph
query processing. Tensors are multi-dimensional arrays, and have
been utilized as data units in deep learning frameworks such as
TensorFlow and PyTorch. Through tensors, these frameworks en-
capsulate optimized hardware-dependent code for automatic per-
formance improvement on modern processors. Inspired by this
practice, we explore how to utilize tensors to e�ciently process
graph queries. Speci�cally, we design a succinct storage format for
tensors to represent graph topology e�ectively and compose graph
query operations using tensor computation on batches of vertices.
We have developed TenGraph, our PyTorch-based prototype, and
evaluated it on graph query benchmark workloads in comparison
with a variety of CPU- and GPU-based systems. Our experimental
results show that TenGraph not only achieves a speedup of 50-100
times on the GPU over the CPU but also outperforms the other
CPU- and GPU-based systems signi�cantly.

PVLDB Reference Format:
Guanghua Li, Hao Zhang, Xibo Sun, Qiong Luo, and Yuanyuan Zhu.
TenGraph: A Tensor-Based Graph Query Engine. PVLDB, 17(13): 4571 -
4584, 2024.
doi:10.14778/3704965.3704967

1 INTRODUCTION
Graph databases store entities and relationships as vertices and
edges, and serve various queries and analytical applications [11, 14,
16, 21, 43]. Graph queries are composed of subgraph matching and
other operations including �lter, projection and aggregate. Due to
their computation complexity and irregular access patterns, graph
queries are often time-consuming, even if graphs �t in memory.
As such, many algorithms and systems [16, 18, 28, 37, 38] have
been proposed to improve graph query processing performance.
However, these systems either fail to take advantage of modern
hardware such as GPUs or simply focus on the subgraph matching

∗Corresponding authors.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704967

problem without considering other graph query operations. We
propose a tensor-based approach to utilizing multicore CPUs and
GPUs automatically for in-memory graph query processing.

A tensor is a multi-dimensional array containing elements of a
single data type [6]. Tensors are the main data unit in deep learning
frameworks, such as PyTorch [33, 34], TensorFlow [9], MXNet [1],
PaddlePaddle [26] and MindSpore [5]. Through tensor APIs, DL
frameworks shield applications from low-level hardware speci�cs
while utilizing underlying hardware features such as SIMD CPU
instructions, GPU kernels, and kernel functions for various ASICs,
e.g., TPUs [20] and NPUs [24], for performance acceleration. Fur-
thermore, the wide usage of DL frameworks in turn leads hardware
vendors to develop advanced techniques for tensor-based computa-
tion, leading to the fast development of modern GPUs and other
ASICs including TPUs and NPUs. With the emergence of large
language models (LLM) [13] and the trend of arti�cial intelligence
generated content (AIGC) [12, 45, 48], opportunities in both hard-
ware and software for tensor-based computation are expected to
further �ourish. We refer to a framework, which maps tensor oper-
ators to highly optimized code for underlying hardware platforms,
as a tensor computation runtime (TCR).

On top of TCR, we build TenGraph, a graph query engine to
leverage existing optimization e�orts put into tensor computation,
to signi�cantly accelerate in-memory graph query processing. We
use the one-dimensional tensor data structure in DL frameworks
as basic data units. As the �rst tensor-based graph query engine,
TenGraph faces several design challenges. First, since TenGraph
supports a graph data model such as the Labeled Property Graph
(LPG) model, vertices and edges must be represented with tensor
data structures in our system. Second, subgraph matching is the
fundamental operation in graph queries, and we aim to support
this operation directly on tensor data structures. In contrast, rela-
tional query engines such as TQP [19] handle subgraph matching
indirectly by the join operation between candidate tables, incurring
redundant computation and large memory cost. Third, TenGraph
must support other graph query operations such as �lter, projection
and aggregate on tensor data structures.

To address the �rst challenge, we design the compressed unique
source (CUS) format for graph structure representation. This format
supports fast access on graphs, such as fast retrieval of neighbors
for a batch of vertices and checking edge existence between pairs
of vertices. To address the second and third challenges, we develop

4571

https://doi.org/10.14778/3704965.3704967
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704967

novel data structures and algorithms on tensors to perform sub-
graph matching and other graph query operations including �lter,
projection and aggregate. TenGraph can also handle negative edge
conditions and optional edges, which are usually unsupported by
existing subgraph matching algorithms.

The contributions of this paper are listed as follows:
• To the best of our knowledge, TenGraph is the �rst tensor-

based graph query engine. We show that subgraph match-
ing and other graph query operations can be expressed by
a small set of tensor operators. Based on TCR, TenGraph
can exploit the latest advances in tensor-based software
frameworks as well as underlying hardware accelerators.

• We design a storage format for e�cient graph structure
representation with tensors. This design facilitates graph
query operations with tensor computation.

• We show how we process complex graph queries composed
of 4G?0=3 , 5 8;C4A , ?A> 942C8>= and 066A460C4 .

• We use both macro-benchmarks and micro-benchmarks to
evaluate our query engine in comparison with state-of-the-
art systems. Our TenGraph on the GPU is up to two orders
of magnitude faster than on the CPU and up to �ve times
faster than our tensor-based relational engine extended
from TQP on the GPU. Additionally, TenGraph outperforms
CPU-based Neo4j [43], TigerGraph [14], RapidMatch [37],
and GPU-based EGSM [38] on the GPU.

2 BACKGROUND AND RELATEDWORK
2.1 Graph Databases and Graph Queries

Person:2

Person:1

Person:0

Person:3

Person:4
Person:5

Post:3

Post:0

Post:5 Post:4

Post:1

Post:2likes likes

likes

likes

likes

likes
likes

likes

Date: 2023-04-16

Date: 2023-02-13

Age: 19

Age: 32

Age: 26

Age: 45

Age: 36

Age: 23

Date: 2023-02-13

Date: 2023-05-03

Date: 2023-06-19

Date: 2023-10-06

Date: 2023-11-18

Date: 2022-12-22

Figure 1: An example labeled property graph with %4AB>= and
%>BC vertices, ;8:4B edges, and ⇡0C4 and �64 properties.

RDF (Resource Description Framework) and LPG (Labeled Prop-
erty Graph) are two popular data models in graph databases. In
the RDF model, each record is a triple (subject, predicate, object),
where predicate is an edge from subject to object. In comparison,
LPG allows vertices and edges to have labels and properties, thus
enabling more natural data modeling in di�erent scenarios [35].
In TenGraph, we adopt the LPG model. An LPG can be repre-
sented as ⌧ (+ , ⇢, !, ;+ , ;⇢ , ,, , ?+ , ?⇢). + and ⇢ are vertices and
edges respectively. ! is a set of labels. ;+ and ;⇢ are labeling func-
tions for vertices and edges respectively, which assign a subset
of ! to a vertex or an edge. Each vertex or edge can have any

number of properties. A property is de�ned as a key-value pair
? = (:4~, E0;D4),:4~ 2 , E0;D4 2 , . is the set of all property
keys, and, is the set of all property values. ?+ and ?⇢ maps a
vertex and an edge respectively to a set of properties [11]. In various
graph databases, the LPG models have not been standardized [11].
In Neo4j [43], a vertex can have an arbitrary number of labels but
an edge must have exactly one label. In comparison, TigerGraph
[14] adopts a schema-based property graph model, where a vertex
or an edge must have exactly one type, which determines what
properties the vertex or the edge has. TigerGraph allows a vertex
to have multiple labels, but these labels are merely di�erent name
tags and are not associated with the properties as the type is. We
adopt TigerGraph’s LPG model for its �exibility and e�ciency.

Typical graph queries consist of subgraph patterns to be matched
against the data graph, combined with other operations such as
�lter, projection and aggregate. We give de�nitions of the basic
operations in graph queries in Table 1.

Table 1: De�nitions of basic graph query operations. Corre-
sponding relational operations are listed inside the paren-
theses at the end of the de�nitions.

Graph Query Operation De�nition

expand

Match an edge between an already matched
vertex and a new vertex in the pattern
graph, and add the candidates for the new
vertex to the intermediate results. (join)

expand_into
Match an edge between two already matched
vertices in the pattern graph (semi_join)

anti_expand_into

Remove from intermediate results
those that have a pair of neighboring vertices
corresponding to a speci�ed edge in the pattern
graph (anti_semi_join)

�lter
Evaluate a �lter condition on the intermediate
results. (�lter)

projection
Select speci�ed columns from the
intermediate results and evaluate projection
expressions (if any). (projection)

aggregate
Group the intermediate results by
the group-by columns and apply the aggregate
function to each group. (aggregate)

ordering
Arrange intermediate results in a speci�c
order based on the order-by columns. (ordering)

get_vertex_properties

Obtain property values for the speci�ed column
(containing vertex IDs) in the intermediate results
and add the property values to the intermediate
results. (join)

2.2 Subgraph Matching
Subgraph matching is a core operation in graph databases. It �nds
all matching subgraphs in the data graph for the given pattern graph.
Many algorithms [36] have been designed for subgraph matching
on undirected vertex-labeled graphs. Exploration-based methods
follow the backtracking framework proposed by Ullmann [41]. Join-
based algorithms typically treat subgraph matching problems as
join operations [37]. Worst-case optimal join (WCOJ) algorithms
[31] have a theoretical complexity guarantee, and are not only
adopted in relational databases,e.g., Umbra [30], but also integrated

4572

into graph databases Graph�owDB [21] and Kùzu [16]. Our work
belongs to the join-based category and is not WCOJ. Implementing
WCOJ in tensors is an interesting future work direction.

Subgraph matching algorithms have been accelerated on modern
hardware such as the GPU [23, 38, 40, 42, 44, 46, 47]. CuTS [46]
introduces partial results compression and e�cient set intersection
methods. LFTJ-GPU [44] is a worst-case optimal join method based
on the GPU, executing in the breadth-�rst order. Most recently,
EGSM [38] has been proposed to perform subgraph matching in
a hybrid breadth-�st and depth-�rst order on the GPU and main-
tain an auxiliary data structure for e�cient candidate �ltering and
dynamic matching vertex ordering. Implemented in CUDA code,
these GPU-based methods have undergone hardware-speci�c opti-
mizations such as how to assign tasks to thread groups to achieve
workload balance and how to manage GPU memory. In contrast,
our TenGraph focuses on expressing graph query operations with
tensor operators and designing novel and generic tensor algorithms
where thread scheduling and memory management are handled by
TCR. We design novel data structures for intermediate result repre-
sentation to save memory cost. We also support subgraph queries
that are more complex than existing work, including negative edge
conditions and optional edges, and other graph query operations
such as �lter, projection and aggregate.

2.3 Tensor Computation Runtime
Open-source deep learning (DL) frameworks make it easy to de-
sign, train and deploy arti�cial neural networks. Such frameworks
include PyTorch [33, 34], TensorFlow [9], MXNet [1], PaddlePad-
dle [26], MindSpore [5], and so on. In these frameworks, data are
represented as tensors, or multi-dimensional arrays, and computa-
tion is transformed into tensor operators. DL frameworks have a
dispatcher or compiler under the hood to execute tensor operators
on di�erent data types and a variety of hardware devices such as
CPUs, GPUs, and various ASICs (e.g. TPUs [20] and NPUs [24]).
In Table 2, we list common tensor operators supported by these
frameworks, or TCRs, using the naming convention of PyTorch. A
detailed description of these tensor operators can be found in Py-
Torch documentation [6]. We give the functionality and complexity
of the most commonly used tensor operators in Table 3. PyTorch
is the chosen TCR for the implementation of our graph query en-
gine because of its popularity. In PyTorch, these tensor operators
are provided as API functions. We use the Tensor.to function in
PyTorch to move tensors between CPU memory and GPU memory.
In the remainder of this paper, we describe our algorithms using
the tensor operators in Table 2. The pseudo-code will be presented
as how the algorithms are written in Python using PyTorch APIs.

In recent years, researchers have begun to explore what other
data analytical tasks TCR can support, in addition to DL. Humming-
bird [29] maps traditional Machine Learning models, e.g. decision
trees, into tensor operators and performs competitively on micro-
benchmarks compared with hand-crafted kernels. The follow-up
work [22] shows how relation cardinality estimation and the graph
algorithm PageRank [32] can be implemented using tensor opera-
tors. TOD [49] is a tensor-based system for e�cient and scalable
outlier detection (OD) on GPUs. Implemented on top of PyTorch,
TOD adopts automatic batching to decompose OD computations

Table 2: Common tensor operators.

Category Tensor Operators

Creation
from_numpy, zeros, ones, fill, empty,
zeros_like, ones_like, empty_like, concatenate,
stack, repeat_interleave

Indexing & Slicing index_select, masked_select, narrow

Assignment index_put, masked_fill

Comparison eq, lt, gt, le, ge, isnan

Logical Ops logical_and, logical_or, logical_not

Arithmetic Ops add, sub, mul, div, remainder

Reduction sum, max, min, mean, scatter_reduce, all, any

Summary
bincount, histc, nonzero, unique, sort,
unique_consecutive, cumsum, isin, bucketize

into small batches, to support both single-GPU and multiple-GPU
execution. TQP (Tensor Query Processor) [19] is a tensor-based
system for relational queries, also implemented upon PyTorch. TQP
represents database tables in the column-oriented format, each col-
umn as a tensor. It uses Spark to parse and optimize SQL queries,
and return the query plan. The plan is executed using correspond-
ing tensor algorithms for �lter, join and aggregate. TQP supports
all queries in the TPC-H benchmark.

In comparison to current TCR-based systems, TenGraph uses
tensor data structures but targets at di�erent applications, i.e. graph
queries. In TQP, entities and relationships between entities are both
modeled and organized as tables, whereas in TenGraph, they are
considered as vertices and edges respectively. TenGraph adopts an
e�cient tensor representation for graph structures, which enables
fast neighbor traversal. In TQP, this operation is indirectly achieved
by the join operation between tables. As a result, TenGraph outper-
forms TQP on complex graph queries in our experiments.

3 TENGRAPH
In this section, we �rst present TenGraph’s data model and the
storage backend that supports this model. Then we show how we
represent graph structures using tensors and how this representa-
tion supports basic graph operations including traversing neighbors
and checking edge existence. Finally, we describe how we perform
subgraph matching as well as various graph query operations with
tensor algorithms and data structures.

Figure 2 illustrates the architecture of TenGraph. We use tensors
as the basic data abstraction, design data structures based on tensors
for graph structure and intermediate query result representation,
and develop tensor algorithms for graph query operations. The TCR,
such as PyTorch, is responsible for mapping the computation into
low-level implementations and running them on di�erent devices.

3.1 Graph Data Model and Storage Backend
In TenGraph, we follow the LPG model from TigerGraph where
each vertex has a type and the type determines what properties
the vertex has. We de�ne the edge type as a 3-tuple (source-vertex
type, edge label, destination-vertex type). The edge type determines
what properties an edge has. This schema information is common in
graph data [18]. While this LPG model has the �exibility of various

4573

Table 3: Functionality and complexity of commonly used tensor operators. (We consider one-dimensional tensors here. >?
denotes the corresponding operator. =G is the length of the tensor CG .)

Tensor Operator Functionality Complexity
Step Work

indexing: C> C [C83G] Return a new tensor C> consisting of elements selected from the input tensor C with a given index tensor C83G . $ (1) $ (=83G)
masked_select: C> C [C<0B:] Return a new tensor C> consisting of elements selected from the input tensor C with a given mask tensor C<0B: . $ (;>6 (=<0B:)) $ (=<0B:)
index_put: C0 [C83G] C1

Replace the elements (speci�ed by a given index tensor C83G) in the input tensor C0 , with the elements in
another tensor C1 .

$ (1) $ (=1)

masked_fill: C0 [C<0B:] C1
Replace the elements (speci�ed by a given mask tensor C<0B:) in the input tensor C0 , with the elements in
another tensor C1 .

$ (;>6 (=1)) $ (=1)

sort: CB>AC43 , C83G >? (C) Return elements of the input tensor C in a sorted order and their original indices in the input tensor. $ (;>6 (=))
(for integer tensors)

$ (=)
(for integer tensors)

unique: C> , C2 , C8 >? (C) Return all unique elements in the input tensor in a sorted order as C> and optionally return the count of each
unique element (C2) and the index in C> of each element in the input tensor (C8).

$ (;>6 (=))
(for integer tensors)

$ (=)
(for integer tensors)

bincount: C> >? (C)
For an input non-negative integer tensor C , return a tensor C> of length equaling the maximum value<0G+
in C plus 1. Each element (bin) indexed from 0 to<0G+ in C> holds the count of the value that occurs in C
equaling the bin index.

$ (;>6 (=)) $ (=)

isin: C<0B: >? (C0 , C1)
Test if each element of one input tensor C0 occurs in the other input tensor C1 and return True at the same index
as the C0 element in the output boolean tensor C<0B: and False otherwise. $ (;>6 (=1)) $ (=0;>6 (=1))

cumsum: C> >? (C) Return the cumulative sum (inclusive pre�x sum) of the elements in the input tensor C . $ (;>6 (=)) $ (=)
repeat_interleave: C> >? (C, CA)

Return a tensor C> in which each element of the input tensor C is repeated a number of times as speci�ed by the
repetition tensor CA .

$ (;>6 (=)) $ (= + =>)

scatter_reduce: C> >? (C , C83G)
Given two input tensors of the same length, C and C83G , and a reduction function (e.g. BD<,<40=,<0G , and
<8=), reduce all elements from C that correspond to the same index value 83G in C83G to the element at 83G in
the output tensor C> , with the given reduction function.

$ (;>6 (=)) $ (=)

projection

filter

ordering

aggregate

expand

expand_into

anti_expand_into

Tensors

bincount cumsum

repeat_interleave

indexing

index_put

masked_select

scatter_reduce

sort unique

……

CPU ASIC

Path Candidate
Representation

Tree Candidate
Representation

Tensor Operators

TenGraph

Underlying
Hardware

Graph Query
Operations

Intermediate
Result

CUS
Representation

Graph Structure
(Topology)

Tensor
Computation
Runtime
 (TCR)

Graph Queries

decomposed
into

Vertex/Edge
Property get_vertex_properties

Table
Representation

Query Results

unfolded
into

GPU

Neighbor Traversal
Edge Existence Checking

Figure 2: System Overview of TenGraph.

types, we can store vertices/edges of the same type together and
adopt column-oriented storage, which is bene�cial for performance.

Speci�cally, we store vertex properties in columns, which are one-
dimensional tensors, and organize all properties of the same type of
vertices as a column-oriented table. When = vertices belong to the
same type, we number these vertices consecutively from 0 to = � 1
and put their properties in a table, one column for one property. The
8-th (counting from 0) element of each column is the corresponding
property value of vertex 8 . To get property values for a batch of
vertices, we execute the indexing operator on the corresponding
column tensor with vertex IDs as indices. The following subsection
shows how we store edges and edge properties.

3.2 Graph Structure Representation

z

0
2
3
5

2
3
5
0
5
0
0
2

2
3
5
0
5
0
0
2

0
0
0
2
2
3
5
5

tsv tdv

tusv td

tdv

CUS: Compressed Unique Source CSR: Compressed sparse row
CUS (vsid): Compressed Unique Source (with Virtual Source-Vertex ID)

tindices

tusv , td = unique_consecutive(tsv ,
 return_counts=True)

tsv = repeat_interleave(tusv , td)

tcumsum = cumsum(td’)
tindptr = concatenate([tensor([0]), tcumsum])
tindices = tdv

td' = diff(tindptr)
tdv = tindices

td’ = zeros(maxVertexID + 1)
td‘ [tusv] = td

tusv = nonzero(td’).squeeze()
td = td’[tusv]

2
3
5
0
5
0
0
2td’
tdv

0
3
3
5
6
6
8

2
3
5
0
5
0
0
2

tindptr

0

1

2

3

4

5

3
0
2
1
0
2

Table (sorted) CUS CUS (vsid) CSR

0

1

2

3

4

5

6

7

3
2
1
2

Figure 3: Four representations of the graph structure in Fig-
ure 1 and how they can be transformed between each other.

The graph structure representation directly impacts the perfor-
mance of graph queries [11]. In TenGraph, for each edge type, we
use two compressed unique source (CUS) storage units for topology
and two tables for edge properties.

3.2.1 The CUS format. A CUS storage unit contains three one-
dimensional tensors to represent all edges of an edge type, i.e.,
the unique source vertex tensor CDBE , the degree tensor C3 and the
destination vertex tensor C3E . CDBE and C3 have the same length. The
former contains unique source vertex IDs and the latter stores the
out-degrees (in terms of this edge type) of these source vertices. The
tensor C3E has the length as the number of edges of the edge type
and holds all destination vertex IDs of these edges. The destination
vertex IDs are clustered by their source vertices. These clusters are
arranged in the same order as the source vertex IDs in CDBE . Figure
3 illustrates this format and depicts how it can be transformed

4574

from and to the table representation or the CSR format. For access
e�ciency, we use two CUS storage units for each edge type, with
one CUS clustered by the source vertex and the other clustered
by the destination vertex. This redundancy is common practice in
graph databases [18]. Edge properties are stored in plain tables, the
same as we do for vertex properties. The length of each property
column is the same as that of C3E .

Algorithm 1 Traverse Neighbors
Input: inpuIds: a tensor of input vertex IDs; src: the tensor of unique
source-vertex IDs (CDBE in Figure 3); deg: degree tensor (C3 in Figure 3);
dst: destination-vertex tensor (C3E in Figure 3).
Output: neighborCounts, neighbors: both are tensors.

1: neighborCounts a zero tensor, length is lengthOf (inputIds)
ù get indices for src.

2: leftOutIdx, rightOutIdx join(inputIds, src)
3: leftOutIdx, sortIndices sort(leftOutIdx)
4: rightOutIdx rightOutIdx[sortIndices]

ù get indices for dst.
5: dstIdx index_spread(rightOutIdx, deg)
6: neighborCounts[leftOutIdx] deg[rightOutIdx]
7: neighbors dst[dstIdx]
8: return neighborCounts, neighbors

3
2
1
2

2
3
5
0
5
0
0
2

tusv

tdv

0
2
3
5

td

0

1

2

3

0

1

2

3

4

5

6

7

0

1

2

3

Input: indices = tensor([2, 1, 1, 3, 0])

Output: dstIndices = tensor([5, 3, 4, 3, 4, 6, 7, 0, 1, 2])
2 1 1 3 0

Neighbor cluster for source vertex tusv[0] (vertex ID: 0)

Neighbor cluster for source vertex tusv[1] (vertex ID: 2)

Neighbor cluster for source vertex tusv[2] (vertex ID: 3)

Neighbor cluster for source vertex tusv[3] (vertex ID: 5)

Figure 4: An example of index spread.

3.2.2 Neighbor Traversal. One basic function on a graph structure
is to �nd neighbors for given vertices. We design a tensor-based al-
gorithm in Algorithm 1. In Algorithm 1, we underline the functions
join and index_spread to di�erentiate them from tensor operators.
The join function is tensor-based. The TQP paper [19] shows its
implementation. The index_spread function is described in Algo-
rithm 2. In Algorithm 1, we �rst perform a join between the given
source-vertex ID tensor 8=?DC�3B and the unique source-vertex ten-
sor BA2 in our CUS storage (Line 2). Since this join is not between
tables and BA2 is unique-valued and sorted, the join is e�cient. The
join returns output indices for both tensors, namely ;4 5 C$DC�3G
and A86⌘C$DC�3G respectively. Using ;4 5 C$DC�3G and A86⌘C$DC�3G ,
we can get the join result values from the two input tensors re-
spectively. We then sort A86⌘C$DC�3G in the order of ;4 5 C$DC�3G
(Lines 3-4), so that the output destination ids will follow the order of
the source vertices in the input tensor 8=?DC�3B . Then we calculate
the corresponding destination-vertex tensor indices with the index
spread function (Line 5). This function "spreads" the indices for the

Algorithm 2 Index Spread
Input: indices: a tensor of initial indices; rpt: a repetition tensor (for
example, C3 in Figure 3, repetition tensors in Figure 6).
Output: dstIndices: a tensor of output indices

1: cumRpt cumsum(rpt, dim=0)
2: outRpt rpt[indices]
3: outCumRpt cumRpt[indices]

ù Starting indices of neighbor clusters.
4: startIdx outCumRpt - outRpt
5: cumOutRpt cumsum(outRpt, dim=0)

ù Starting indices of neighbor clusters in the result tensor.
6: startIdxNew cumOutRpt - outRpt
7: startIdx repeat_interleave(startIdx, outRpt)
8: startIdxNew repeat_interleave(startIdxNew, outRpt)
9: rng arange(lengthOf (startIdx))

ù Index o�sets inside neighbor clusters.
10: idxO�set rng - startIdxNew
11: dstIndices startIdx + idxO�set
12: return dstIndices

unique source-vertex tensor into indices for the destination-vertex
tensor. An example of index spread is shown in Figure 4. We �ll ele-
ments in neighborCounts at positions indicated by leftOutIdx with
values obtained from the degree tensor using rightOutIdx (Line
6). The elements in neighborCounts at positions corresponding to
input vertex IDs that do not appear in the join result will remain
zeros. We use the result indices obtained by index spread to select
neighbor IDs from the destination-vertex tensor (Line 7).

Given indices for the unique source-vertex tensor CDBE , the in-
dex_spread function shown in Algorithm 2 calculates the indices for
the destination-vertex tensor C3E that locate clusters of neighbors
following the order of these clusters’ corresponding source ver-
tices. Speci�cally, we �rst calculate the starting indices of neighbor
clusters in C3E (Lines 1-4) and then calculate the starting indices of
neighbor clusters in the �nal result tensor (Lines 5 and 6). For each
neighbor cluster, its starting index is the sum of the sizes of all pre-
ceding neighbor clusters. Next, we perform repeat_interleave
on both tensors of indices (Lines 7 and 8). This operation makes
both tensors have the same length as the result destination indices,
because for each starting index, the number of repetitions is the size
of the corresponding neighbor cluster. After repeat_interleave,
we create a tensor in which the value of each element equals the
index of that element (Line 9) and subtract from it the tensor that
holds the starting indices of neighbor clusters in the result tensor
(Line 10). Thus we get the tensor that contains the index o�sets
inside each neighbor cluster. Adding the starting indices with these
index o�sets gives us the result indices (Line 11).

3.2.3 Optimization. We can only keep a modi�ed degree tensor C 03
and destination-vertex tensor C3E . In C 03 , the index of each element
corresponds to the source-vertex ID. That is, the 8-th value is the out-
degree of vertex 8 . Figure 3 gives an illustration. With this virtual
source-vertex ID technique, we can omit lines 2-4 in Algorithm 1
and directly use 8=?DC#>34�3B as A86⌘C$DC�3G .

3.2.4 Analysis. We analyze the neighbor traversal e�ciency of
the CUS format. After investigating the implementation of the join
function in TQP [19], we know its step complexity is $ (;>6(=1) +

4575

;>6(=2) + ;>6(E0;D4<0G)) and its work complexity is $ (=1 + =2 +
E0;D4<0G + | 9>8=_A4BD;C |) because it involves sorting both the left
input tensor and the right input tensor, doing pre�x sum over
histograms of left and right values. Here, =1 and =2 are the lengths
of left and right tensors respectively, and E0;D4<0G is the maximum
value appearing in the two input tensors. The complexity of index
spread (Algorithm 2) is dominated by repeat_interleave.

We denote 3̂ as the maximum out-degree of the source vertices,
= the number of vertices,< the number of edges, =8= the number
of input vertex IDs. Since the source-vertex ID column is already
sorted and unique, the join function at Line 2 of Algorithm 1 does
not need to sort its right input tensor, and | 9>8=_A4BD;C | will be
less than or equal to =8= . Then, taking the sort operator at Line
3 and index_spread function at Line 5 into consideration, the step
complexity of traversing neighbors and �nally putting all results
in a single tensor in Algorithm 1 is$ (;>6(=8=) + ;>6(=)). The work
complexity is $ (= + =8=3̂). If we use the virtual source-vertex ID
technique, the join function and the sort operator in Algorithm 1
will be removed, the step complexity of neighbor traversal will be
$ (;>6(=8=)) and the work complexity will be $ (=8=3̂).

Common representations of graph structure include the adja-
cency matrix (AM) and the adjacency list (AL) [11]. The compressed
sparse row format (CSR) is a compressed form of AM and is widely
adopted in subgraph matching algorithms [37, 38, 46, 47]. Uncom-
pressed AM requires $ (=2) space whereas AL, CSR and CUS have
a space complexity of $ (< + =). However, if we implement AL by
representing each neighbor list with a tensor, we will have a lot
of tensors of di�erent lengths. Then we can not take advantage
of tensor operators to traverse neighbors in parallel for a batch of
input vertex IDs. CSR is unsuitable for TenGraph either, as every
time we traverse neighbors, we must transform CSR to CUS �rst.

Algorithm 3 Check Edge Existence
Input: inputSrcIds: a tensor of input source vertex IDs; inpuDstIds: a
tensor of input destination vertex IDs, its length is equal to that of
inputSrcIds; src; deg; dst.
Output: resultMap, a boolean tensor of the same length as that of
inputSrcIds (or inputDstIds)

1: inputLength lengthOf (inputSrcIds)
2: newSrc repeat_interleave(src, deg)
3: catSrc concatenate([inputSrcIds, newSrc])
4: catDst concatenate([inputDstIds, dst])
5: agent get_agent_tensor([catSrc, catDst], [True, True])
6: inputAgent agent[:inputLength]
7: edgeAgent agent[inputLength:]
8: resultMap isin(inputAgent, edgeAgent)
9: return resultMap

3.2.5 Edge Existence Checking. Another basic function that a graph
structure representation should support is to check the existence of
edges. Algorithm 3 shows how we perform edge existence checking
on our CUS representation for a batch of vertex pairs. We �rst
transform the CUS format to the table representation at Line 2.
Then we use the tensor operator isin to check the existence of
input vertex pairs in the edge set. Since the isin operator checks
the existence of each element, not each element pair, we create

Algorithm 4 Get Agent Tensor
Input: tensorList: an array of tensors; ascendingList: an array of boolean
values that indicate sorting order.
Output: 064=C

1: agent a zero-valued tensor of the same length as each tensor in
tensorList
ù From low sorting priority to high sorting priority.

2: for idx = lengthOf (tensorList) �1 to 0 do
3: curTensor tensorList[idx]
4: if ascendingList[idx] is True then ù Ascending.
5: curTensor curTensor - curTensor.min()
6: else ù Descending.
7: curTensor curTensor.max() - curTensor
8: end if
9: if max(agent) +1 > 231 then ù To avoid over�ow.
10: uniq, invIdx unique(agent, return_inverse=True)
11: agent invIdx
12: end if
13: if max(curTensor) > 231 then ù To avoid over�ow.
14: uniq, invIdx unique(curTensor, return_inverse=True)
15: curTensor invIdx
16: end if
17: weight agent.max() +1
18: agent agent + weight ⇤ curTensor
19: end for
20: return agent

agent tensors, inputAgent and edgeAgent, for the input tensor pair
and for the tensor pair of=4F(A2 and3BC respectively. Each element
in the agent tensor represents the two elements at the same position
in the original tensor pairs. Thus, performing isin on the agent
tensors is the same as checking the existence of vertex pairs in
the edge set. To map vertex pairs into equal values in the agent
tensors, we �rst concatenate source tensors and destination tensors
respectively, and then create the agent tensor together (Line 3 to
Line 5). In TenGraph, this agent tensor technique is used in various
graph query operations that involve sorting multiple columns, such
as an aggregate operation with multiple group-by columns, because
the tensor operator sort itself is for a single tensor.

Algorithm 4 shows the steps of creating an agent tensor. The
result agent tensor can be used for tuple value comparison or multi-
column sorting. We use a weighting scheme to generate elements in
the agent tensor in the order of input tensors. Speci�cally, for each
tensor (i.e. each column) in the input tensor list, if it should be sorted
in descending order, we update each tensor element value by taking
the di�erence between the maximum value and the element value;
otherwise, we take the di�erence between the current element
values and theminimumone (Line 4-8). Lines 9-16 perform checking
and avoiding over�ow. If the examined value is greater than the
threshold, we use the unique operator to get inverse indices (see
Table 3) and replace the original tensor with inverse indices, because
the elements in the tensor of inverse indices have the same order
as the elements in the original tensor.

The step complexity of Algorithm 4 is $ (;>6(=8=)). The work
complexity is =8= . =8= is the length of the tensors in the input
C4=B>A!8BC . With CUS, we can do edge existence checking for ;
vertex pairs with a step complexity of$ (;>6(=) + ;>6(; +<)) and a
work complexity of $ (= +< + ; ⇤ ;>6(<)).

4576

3.3 Subgraph Matching and Other Operations
Subgraph matching is a fundamental operation in graph queries.
In this subsection, we show how we handle subgraph matching
in TenGraph. We start from the simplest case, where the pattern
graph is a path. Then we generalize the method to tree patterns.
Finally, we show how we handle cycles and other scenarios that are
rarely considered in traditional pure subgraph matching algorithms,
including negative edge conditions and optional edges.

Our solution takes two steps. First, we get all candidate vertex
IDs for pattern graph vertices respectively, stored in a novel com-
pressed data structure, namely path/tree candidate representation.
Then we unfold (i.e. decompress) this representation to get �nal
results organized as a table. The compressed data structure supports
various operations including �lter, projection and aggregate.

Post

length > 100

MessagePerson replyOfhasCreator

Figure 5: An example of graph query with path pattern.

3.3.1 Paths. We �rst describe howwe do subgraphmatching when
the query pattern graph is a path. Consider the example query
in Figure 5. We match the pattern graph from the Post vertex to
the Person vertex. We choose this matching order based on the
observation that the �lter condition on the Post vertex leads to
fewer initial candidates. We start with a batch of Post vertex IDs
that satisfy the �lter condition. These IDs are in a tensor. This tensor
is the �rst column in our path candidate representation, namely
the Post column. We then do the expand operation by calling the
traverse_neighbors procedure on the reverse representation of the
edge type (Message, replyOf, Post), with the Post column as the input.
As a result, we get a =486⌘1>A_2>D=CB tensor and a new column (the
"4BB064 column). We refer to this =486⌘1>A_2>D=CB tensor as the
repetition tensor of the Post column. We use this name since we can
unfold the Post column to make its length the same as the"4BB064
column by executing repeat_interleave operator on it, with this
repetition tensor as the parameter. (In this case, we can also say we
align the two columns.) After matching Message-replyOf->Post in
the pattern graph of Figure 5, we perform expand again by calling
the traverse_neighbors procedure on our CUS representation of the
edges with the type (Message, hasCreator, Person). Again, we keep
both two output tensors, namely the new neighor_counts tensor
and the new Person column. We assign a trivial repetition tensor to
our last column Person, as a placeholder (see A3 in Figure 6).

To enumerate the matching results, we fully unfold all columns.
Speci�cally, for the �rst column, we iteratively execute the operator
repeat_interleave on it with the repetition tensors of the �rst
column to the last; for the second column, we go from the second
repetition tensor to the last, and so on. Finally, we get the full
matching results represented as a table, all columns fully unfolded.

To allow for more �exibility, we decouple the columns from
their repetition tensors. We put all repetition tensors into a list and
correspond each repetition tensor to a level, which is the ordinal
number of that repetition tensor in the list. A larger ordinal number

rearrage the elements in the
remaining columns accordingly

3
4
6
7
9

0

1

1

0

0

7
4

1
2
4
5
7

c0’ <- repeat_interleave(c0, r2)
[align c0 and c2]

r0’ <- bincount(idx’[mask]) [recompute r0 (r0’)]

1

2

4

5

7

0

2

1

4

5

0

4

7

2
1

0

2

1

2

0

2

1

1

2

2

1

4

1

levels:

1

c0

c1 c2

c3

c4

columns: repetition
tensors:

r0

r1

r2

r3

levels: 0 1 2 31 0 1 2 3

Path Candidate Representation

filter

projection

aggregate

- c0 < c2

0
2

0
0
2

2
1

1
4
1

< ->
1
1
0

c0

c0’ c2 mask
1
1
0

mask

0

1

idx 0

0

1

0

0

2
0

0

1

r0
r0’

- c0, c4, c3 + 2

0
2

c0 -> c0’

c1’ <- c4

add(c3, 2) -> c2’

- group by c2, max(c3)

1
4
1

c0’, inverseIdx <- unique(c2, return_inverse=True)

0

1

0

0

1

inverseIdx
0

1

0

1
2
2

c3 inverseIdx’

max
max

c1’
0

1

2

1

2

0

3

bincount

1
2
4
5
7

0

2

1

4

5

0

4

7

0

1

1

0

0

1

r0

mask <- lt(c0’, c2) [evaluate filter condition]2

apply the mask to
 all columns of level 1 and r1

3

4

unfold the mask
and apply new masks
51

1

100 1 1
0

00

30
2 2

compute c0’, c1’ and c2’

keep all
repetition
tensors

1

2

1
4

c2

c0’

inverseIdx’ <- repeat_interleave(inverseIdx, r2)
[unfold inverseIdx to c3’s level]

1

inverseIdx r2 inverseIdx’

2

c1’ <- scatter_reduce(c3 , inverseIdx’, “max”)3
1

1

1 1 2 2 2

ordering
fully unfold all columns
sort the sort-by columns with

the help of an agent tensor or sort
them one by one in a radix-sort
way, using the sort operator.

1
2

3

Idx’

Figure 6: An example of the path candidate representation.

is regarded as a higher level. Each column has a level as well. We
can unfold a column to any level that is higher than its current
level, by doing repeat_interleave iteratively with corresponding
repetition tensors. Figure 6 illustrates this design and shows by
examples how we implement other graph query operations with
tensor operators. Details will be added to a full technical report.

Sometimes we need to alter the level structure of a path candidate
representation. For example, if 21, 22 and 23 are removed from
the path candidate representation in Figure 6 (after a projection
operation), the 4-level structure will be redundant since we have to
keep 3 non-trivial repetition tensors. To change the 4-level structure
into 2 levels, we reduce the �rst three repetition tensors into one
(see Figure 7). The repetition tensor reduction is in Algorithm 5.

2
1
2
0
3

2
1

1
2
2

0
2

…
…
…

…
…
…
…
…

0
2
1
4
5
0
4
7

2

1

2

3

0

1

2

2

2

1

5
3

0
2

0
2
1
4
5
0
4
7

5

3

c4

c1
c3

c0
c0

c4

r0
r1

r2

r’

Input: [r0, r1, r2] Output: r’

Figure 7: An example of repetition tensor reduction.

4577

Algorithm 5 Repetition Tensor Reduction
Input: rptLs: an array of repetition tensors.
Output: A4BD;C : a new repetition tensor.

1: indices arange(lengthOf (rptLs[0]))
2: for idx = 0, 1, . . ., lengthOf (rptLs)�2 do
3: indices repeat_interleave(indices, rptLs[idx])
4: end for
5: result scatter_reduce(rptLs[�1], indices, reduce="sum")
6: return result

3.3.2 Trees. When the pattern graph is a path, every timewe do the
expand operation, we perform traverse_neighbors with the current
newest column as input. However, when the pattern is a tree, we
may need to perform neighbor traversal with some "older" column
as input. As a result, we organize columns in a tree structure for a
tree pattern, as illustrated in Figure 8.

0

2

0

1

1

1

2

2

1

3

2

1

4
0

3

6

2

3

3

2

1

2

3

3
1

3

2

5

6

0

4

7

0

2

5

1

3

2

5

6

0

Tree Candidate Representation
c0

c1 c2

c3

c4

n0

n1 n2

n3 n4

r1 r2

r3 r4

n5

6

2

4

3

c5

0

2

5

r5

r6

n6

c6

0
2
0
1

1
1
2

2
1

3
2

3
2
1

2
3
3

0
2
1

2
1

3
2

3
2
1

2
3
3

0

3

2
1

3
2

3
3
2

12

12
2
36

fully unfolded

fully unfold a tree table

Figure 8: An example of the tree candidate representation

We describe our tree candidate representation as follows. The
tree candidate representation contains a group of columns, where
each column is assigned to one node in the association tree. In the
association tree, parent nodes are associated with their children
through repetition tensors. We can re-assign a column to a child
of its current node, by executing repeat_interleave on the col-
umn, with the corresponding repetition tensor as the parameter. In
this process, the association tree structure does not change. Mul-
tiple columns can share the same association tree node, and one
association tree node can hold any number of columns.

We consider how we enumerate all matching results from a tree
candidate representation. We �rst look at the simplest case, where
there are only three columns 20, 21 and 22, corresponding to three
nodes =0, =1 and =2 in the association tree, respectively. Suppose =0
is the root node and the other two nodes, =1 and =2, are children of
=0, with repetition tensors A1 and A2 respectively. For some vertex
ID 8 in 20, its< neighbors in 21 and = neighbors in 22 lead to< ⇤ =
permutations. As Figure 9 shows, we repeat elements in one child
with each element as a unit and in the other with each neighbor
cluster as a unit. We name the two types of repetition as simple
unfolding and index-spread-based unfolding respectively. Algorithm
6 and Algorithm 7 show the two unfolding algorithms. In both
algorithms, the input ;4 5 C⇠⌘8;3 denotes the column to be unfolded.

After we unfold 21 and 22, the structure of the association tree is
altered.We put both result columns 201 and 2

0
2 at a new child of=0 and

remove=1 and=2 from the association tree. We say wemerge =1 and
=2 into that new child by doing the unfolding processes described
above. We then obtain the repetition tensor of the edge between =0
and this new child, A 0, by doing mul (element-wise multiplication)
on A1 and A2. Then we unfold 20 by doing repeat_interleave on
it using A 0. After 20 is unfolded, the tree candidate representation
is fully unfolded, and we remove =0 from the association tree.

2
5
6
2
5
6
0
4
7
0
4
7
0
4
7

0
3

1
4
1
4
5

2
3

3
3

2
2
5
5
6
6
0
0
0
4
4
4
7
7
7

1
1
1
4
4
4
1
1
1
4
4
4
5
5
5

2
5
6
0
4
7

1
4
1
4
1
4
1
4
5
1
4
5
1
4
5

1
1
1
4
4
4
1
1
1
4
4
4
5
5
5

2
5
6
2
5
6
0
4
7
0
4
7
0
4
7

c0

c1 c2

r1 r2

c1’ c2’ c1’ c2’ c1’ c2’

Figure 9: Unfolding children columns

Algorithm 6 Simple Unfolding
Input: leftChild; leftRpt; rightRpt
Output: a tensor representing the unfolded left child

1: lChildRpt repeat_interleave(rightRpt, leftRpt)
2: result repeat_interleave(leftChild, lChildRpt)
3: return result

Algorithm 7 Index-Spread-Based Unfolding
Input: leftChild; leftRpt; rightRpt
Output: a tensor representing the unfolded left child

1: indices arange(lengthOf (leftRpt))
2: indices repeat_interleave(indices, rightRpt)
3: indices index_spread(indices, leftRpt)
4: result leftChild[indices]
5: return result

Now we consider more general cases. Case (1): In the association
tree, there is exactly one root node and two or more children of this
root node. In this case, we choose two of the current children and
merge them into one new child and repeat this process until there
is only one child and one root node left. Case (2): The association
tree contains paths (from root to leaves), and on these paths, each
internal node has only one child. Consider one such path that
includes nodes=0,=1,=2, ...,=; , where ; is the number of edges in this
path and =0 is the root node. We merge all nodes except =0 into one
node through the following process. We let all columns on =1, =2, ...,
=;�1 go to =; , through iteratively doing repeat_interleave. Then,

4578

we calculate a new repetition tensor A 00 by performing repetition
tensor reduction. We remove all nodes except =0 and =; , create an
edge between =0 and =; , and let the repetition tensor at that edge
be A 00. Case (3): In the most general case of trees, we iteratively
merge nodes. Each time, we select a leaf node that has the longest
distance to the root node. If its parent has other children, we merge
these children as in Case (1). Otherwise, we �nd its nearest ancestor
that has more than one child and merge the path from this leaf
node to that ancestor as in Case (2). In this process, the depth of the
association tree gradually decreases (see Figure 8). Finally, there
will be only one root node and one child node. This can be handled
as a path candidate representation with a two-level structure.

We have implemented various graph query operations on the
tree candidate representation, with some adaptations from the im-
plementations used for the path candidate representation.

3.3.3 Handling Cycles, Negative Edge Conditions andOptional Edges.
Cycles in pattern graphs are handled by the expand_into operation,
which matches an edge between two matched vertices D and E in
the pattern graph (see Table 1). To perform expand_into, we align
the columns D and E through the unfolding process as described
above and execute the check_edge_existence procedure on the CUS
representation of the corresponding edge type, with the aligned
D and E columns as input. We apply the obtained mask tensor as
we do in the �lter operation. A negative edge condition speci�es
that an edge must not exist between two vertices in the pattern
graph. It is tackled by the anti_expand_into operation, which is
implemented simply by taking the negation of the mask obtained
in the expand_into operation. When we perform expand from one
column 2 of our partial results, we get a repetition tensor and a new
column. In the repetition tensor, there can be 0s, which indicates
that the corresponding vertices in 2 do not have an edge of such
edge type. We support optional edges by changing those 0s to 1s
and adding null values to the new column.

4 EXPERIMENTS
4.1 Experimental Setup
Hardware and software platforms: We conduct all experiments
on a physical server with 125 GiB of RAM, two AMD EPYC 7302
CPUs (each has 32 virtual cores), and one NVIDIA RTX 3090 GPU
with PCIe 4.0 ⇥16 and 24 GiB of device memory. On the server, we
installed Ubuntu 20.04 with PyTorch 2.1.0, TigerGraph 3.7.0, Neo4j
5.13.0-Enterprise, Numpy 1.26.0, CUDA 11.8, and Docker 24.0.6.
Systems under study: We compare the following seven systems:
(1) Our TenGraph running on the GPU (TenGraph-GPU); (2) Our
TenGraph running on the CPU (TenGraph-CPU); (3) TQP* on the
GPU (TQP*-GPU); (4) TQP* on the CPU (TQP*-CPU); (5) Neo4j [43];
(6) TigerGraph [14] and (7) Memgraph [7].We further compare with
two subgraph-matching algorithms: (8) RapidMatch [37], which
runs on the CPU; and (9) EGSM [38], running on the GPU. TQP* is
our implementation of TQP [19], which is a tensor-based relational
engine that does not take advantage of graph topology, representing
all data with tables. We set the available memory size for all baseline
systems to be large enough to hold the entire dataset in memory
and we perform warmup operations before evaluation. This way,
all nine systems run in the memory.

Workloads: We use LDBC SNB Business Intelligence (BI) read-
only queries [10, 39] and Labelled Subgraph Query Benchmark
[27] (LSQB) in our experiments. LDBC SNB BI workload focuses
on join-heavy and aggregate-heavy complex queries that access
a large portion of the graph. Its dataset contains directed labeled
graphs that mimic the characteristics of social network graph data
in the real world. LSQB is a micro-benchmark based on LDBC SNB,
which focuses on subgraph matching and does not involve other
complex operations such as aggregate, as illustrated in Figure 10.
We also evaluate graph traversal performance using BFS and DFS.

a

Optional Edge
Negative Edge Condition

?

Q1 Q2 Q3

Q4 Q5 Q6

Q7 Q8 Q9
??

Edge

≠a
a

≠ab
≠a

b

a

b
c

a

≠a

b
c

Figure 10: Illustration of LSQB Queries [27].

For LDBC SNB BI queries, we generate datasets at scale factors
of 10 and 100, which means 10 GB and 100 GB of data in total
respectively. LDBC SNB BI queries require input parameters. We
use the parameters generated by the o�cial paramgen tool. For
LSQB queries, we use the pre-generated dataset with a scale factor
of 1. These scale factors are selected to meet the memory capacity
of our experimental environment.
We use the reference implementations [3] of LDBC SNB BI queries,
provided by LDBC and written in GSQL (for TigerGraph) and
Cypher [17] (for Neo4j). We also use the scripts provided by LDBC
to load data for Neo4j and TigerGraph. For Memgraph, we use
the LOAD CSV Cypher clause to load data and adopt the Cypher
implementations provided in its GitHub repository [8] for LDBC
SNB BI queries (Q4, Q8, Q16 and Q17 are not implemented). We
use Docker containers for ease of setup and execution. We adopt
the Cypher implementations of LSQB queries (for both Neo4j and
Memgraph) provided by the authors of LSQB and use the scripts
they provide to convert the dataset into the format that RapidMatch
and EGSM accept [2]. For our methods, we use our engine’s API
functions to create an execution plan. In our implementation, we
use simple optimization heuristics, such as starting from a vertex
with fewer initial candidates, and doing �lter before expand.
Measurement Methodology: For all systems on LDBC SNB BI
workloads, we measure the end-to-end time of queries, which is
from the time point we submit the query to the point we get the
query results in JSON format, both inmainmemory. For ourmethod,
we load the data into memory with Pandas and convert them into
tensors (except strings, which we currently still use Numpy arrays
to store). In the case that we enable GPU acceleration, whenmeasur-
ing time for GPU-accelerated experiments, all tensors are moved to

4579

Table 4: Data preparation time and the CPU/GPU utilization of selected queries (SF=10) for TQP*, TenGraph and Memgraph.

Data Preparation (GPU) Data Preparation (CPU) GPU Utilization (%) CPU Utilization (%)
Loading
Raw
Data

Data
Transfer

Creating
Index

Loading
Raw
Data

Creating
Index Q4 Q12 Q14a Q14b Q17 Q4 Q12 Q14a Q14b Q17

TQP* 52.9s 0.59s 11.9s 52.2s 76.3s 75.2 64.1 46.0 52.4 81.7 50.2 50.3 42.0 50.3 7.4
TenGraph 52.7s 0.54s 12.2s 54.2s 86.7s 73.8 40.0 30.1 18.0 62.6 22.5 50.2 50.2 50.2 5.5
Memgraph n/a n/a n/a 1460.1s 116.6s n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

Table 5: Peak memory cost for intermediate results of se-
lected queries (SF=10) for both TQP* and TenGraph.

Peak Memory Cost (unit: MB, on GPU)
Q4 Q12 Q14a Q14b Q17

TQP* 1483.8 1511.1 2540.0 2422.5 3992.6
TenGraph 1367.9 747.6 724.9 585.8 2567.2

(a) TenGraph on GPU (b) TenGraph on CPU

(c) TQP* on GPU (d) TQP* on CPU
aggregate
to_cus_format
others

anti_expand_into
get_vertex_properties

expand_into
filter

expand (TenGraph) / join (TQP*)
ordering

Figure 11: Query time breakdown for graph query operations
of selected LDBC BI queries at scale factor 10.

GPU memory before we start evaluation, as part of preprocessing,
if the data �t in GPU memory; otherwise, tensors are kept in CPU
memory and are moved to GPU memory on the �y, as part of query
processing. Based on TCR, we do not need to change our code when
we run queries on di�erent devices. While testing our engines on
di�erent aspects, we run each query variant 10 times with parame-
ter value varied and take the average time. When comparing our
engines with other methods, we run each query variant 30 times
with di�erent parameter values. The same parameter setting is used
across methods. We take the average time of 30 runs.

4.2 Comparison with TQP*
We select 5 representative query variants from LDBC BI read-only
queries, namely, complex aggregations (Q4), query composition
(Q12), ranking-style queries (Q14a, with larger intermediate results,

(a) TenGraph on GPU (b) TenGraph on CPU

(c) TQP* on GPU (d) TQP* on CPU
add
arange

bincount
cumsum

empty_like

min
nonzero

repeat_interleave

sort

sub
unique

unique_consecutive

others

indexing

index_select

isin

masked_select

max

Figure 12: Query time breakdown of tensor operators for
TenGraph and the baseline engine TQP* over selected LDBC
BI queries at scale factor 10.

and Q14b, with smaller intermediate results), complex patterns
(Q17) to test our query engines on various aspects.

4.2.1 Data loading time, CPU/GPU utilization and memory cost.
Data preprocessing in GPU-based systems includes loading the
raw data, transferring all data to GPU memory, and then creating
the index structure on the GPU. Table 4 shows the time of each
step. We also measure the GPU and CPU utilization for selected
queries, when running on the GPU and the CPU respectively. We
compare the peak GPU memory cost for intermediate results in
Table 5, measured when running on GPU. As we use the same
tensor data structures no matter they are on the GPU or on the
CPU, the amount of memory used for tensors (when running on
the CPU) is the same as that on the GPU.

4.2.2 �ery Time Breakdown. In Figure 11, we see that in all
cases, the operations for subgraph-matching (including expand,
expand_into and anti_expand_into) account for a large portion of
total query time. When using TenGraph, the proportions of these
operations decrease (except for Q17 on CPU). The reduction of

4580

Figure 13: Query time (in seconds) on the LDBC BI read-only queries, with the y axis in log scale. (SF: Scale Factor) In TenGraph-
GPU and TQP*-GPU, when SF=10, we transfer all raw data to the GPU memory and do preprocessing using GPU before we
start evaluating these queries (see Table 4); when SF=100, we do preprocessing in the CPU memory and transfer all involved
data structures (part of the data graph) to the GPU memory when processing each query, the grey components on the tops of
TenGraph-GPU and TQP*-GPU bars represent the data transfer time.

(a) Query time (in seconds) on LSQB. (SF=1, #vertices: 3.9M, #edges: 19.5M) (b) The BFS and DFS time on the Person-Knows-Person edges.

Figure 14: Performance on (a) subgraph matching and (b) graph traversal.

subgraph-matching time percentage is due to the e�cient represen-
tations of graph structure and intermediate results in TenGraph.

We further break the query time down to the execution time of
tensor operators in Figure 12. In TQP*, bincount and sort account
for a large portion of query time, because they are dominating
operators for the operation join, which takes the majority of total
query time. In TenGraph, we do not need these two operators when
we perform expand using the CUS format with virtual source-vertex
IDs, thus avoiding the overheads for bincount and sort.

4.3 Comparison with Other Methods
4.3.1 Performance on LDBCBI�eries. We run all queries in LDBC
SNB BI workloads except Q10, Q15, Q19, and Q20 because these
four queries require the computation of shortest paths, which we
have not implemented in our engine. These four queries cannot
be expressed e�ciently in vanilla Cypher either. The su�x a in

query variant names indicates the used sets of query parameters
cause relatively large intermediate results and b relatively smaller
intermediate results. The results are shown in Figure 13.

We �rst look at the results with the scale factor 10. In almost
all cases, when running on the GPU, both TQP* and TenGraph are
much faster than running on the CPU and outperform the best
CPU-based baseline systems by a large margin (up to 2 orders
of magnitude when using TenGraph). This shows the advantage
of utilizing modern hardware. In one rare case (Q14b), our GPU-
accelerated TenGraph is slightly outperformed by the best CPU-
based baseline, Neo4j. This is because in this query variant, the
intermediate results are small and the GPU utilization is low. In all
query variants except Q1, our TenGraph is faster than TQP*, on both
GPU andCPU. In contrast, Q1 operates on a single table and the time
di�erence between TQP*-GPU and TenGraph-GPU is merely 0.001
seconds. At this scale factor, Memgraph works correctly only for
Q1, Q9 and Q12, and it returns empty results for other implemented

4581

queries. After further investigation, we �nd that Memgraph only
uses one CPU core when processing a single query, failing to fully
utilize the multi-core CPU of our server. Hence, its performance is
not as good as that of other systems under comparison.

At a scale factor of 100, the three workable systems are TenGraph,
TQP* and Neo4j. We use the evaluation license for TigerGraph,
which does not support more than 50GB of data. Memgraph runs
out of memory when loading data. Because of the 24GB memory
size limit of the NVIDIA RTX 3090 GPU, at the scale factor 100, we
can not put all data structures in GPU memory before evaluation.
Therefore, we preprocess data in CPU memory and transfer all
involved data structures, which represent part of the data graph, to
GPU memory for each query (for TenGraph-GPU and TQP*-GPU).
In 14 out of 20 query variants, TenGraph-GPU or TenGraph-CPU
is the fastest, 1.3-280 times faster than Neo4j. Furthermore, with
GPU memory size constraints, TenGraph-GPU supports 16 query
variants, whereas TQP*-GPU supports only seven. TenGraph-CPU
supports all 20 query variants, but TQP*-CPU fails Q17 due to
a timeout error and Neo4j takes more than one hour to process
Q16a. On Q2, Q5 and Q8, TenGraph-GPU is slower than TenGraph-
CPU due to data transfer. The tra�c overhead of moving query
results from GPU memory to CPU memory is insigni�cant while
moving tensor data structures fromCPUmemory toGPUmemory is
costly. The CPU-to-GPU data transfer time accounts for an average
of 83.4% of query processing time for all queries on TenGraph-
GPU. This high data transfer overhead suggests that we need a
smarter method to manage data transfer. CPU-GPU co-execution,
transferring compressed data and keeping frequently used data in
GPU memory are among possible solutions.

4.3.2 Performance on LSQB �eries. We evaluate our engine’s
performance on the subgraph matching problem using the LSQB
Benchmark [27]. The results are shown in Figure 14a. RapidMatch
[37] is a single-core CPU-based subgraph matching algorithm writ-
ten in C++ and EGSM [38] is a GPU-based subgraph matching
algorithm written with CUDA. We see that all the GPU-based meth-
ods outperform the CPU-based ones. TenGraph-GPU is faster than
GPU-based EGSM. EGSM keeps candidates for each edge in the
pattern graph and �lters these candidates with semi-join operations
before enumerating matching results, whereas TenGraph directly
enumerates matching results. This demonstrates the advantage of
building our system upon TCR since we utilize existing e�cient
tensor operator implementations. We can �nish more queries (i.e.
Q4, Q7, Q8, and Q9) than EGSM and RapidMatch, as they do not
support directed edges, optional edges, or negative edge conditions.
TenGraph bene�ts from the expressivity of tensor operators.

4.3.3 Performance on Graph Traversal. We compare TenGraph’s
graph traversal performance with Neo4j and Memgraph on BFS
(breadth-�rst-search) and DFS (depth-�rst-search). We implement
BFS in TenGraph by iteratively calling the traverse_neighbors pro-
cedure (see Algorithm 1) while keeping a boolean tensor to check
which vertices have been visited. In the DFS implementation, we
also have a boolean tensor to record visited vertices, and we use
a while-loop and a stack in Python to do the search. Our BFS im-
plementation works on both the CPU and the GPU; however, our
current DFS implementation is CPU-only, as a single DFS is se-
quential search. We select one edge type Person-Knows->Person in

the LDBC BI dataset (at scale factors of 10 and 100) and randomly
choose 30 vertices as starting points. We reach the longest reachable
distance for each starting vertex. The results are shown in Figure
14b. Memgraph returns empty results on BFS at the scale factor
100 and encounters timeout errors for DFS. TenGraph achieves a
signi�cant performance advantage over baseline systems on BFS,
especially when GPU acceleration is enabled. This advantage is
attributed to the e�ciency of the tensor-based traverse_neighbors
procedure. The DFS performance of TenGraph is unfortunately
much worse than Neo4j. This is expected since in DFS we use
Python loops over tensor elements due to the sequential nature of
DFS. Whether we can achieve parallel DFS using tensor operators
is an interesting topic in our future work.

5 BENEFITS & LIMITATIONS OF BUILDING
GRAPH QUERY ENGINE UPON TCR

The fundamental design choice of TenGraph is to build a graph
query engine upon TCR. As a �rst step in this direction, it exhibits
both great potentials and some limitations.

We believe a tensor-based graph query engine has bene�ts in
the following three aspects. First, by expressing graph queries with
a small set of tensor operators and running them on TCRs, we ease
the development and achieve automatic performance improvement,
avoiding writing heavy multi-threaded C++ code or CUDA kernels
from scratch. Second, since TCRs are designed to be compatible
with various devices, TenGraph is naturally cross-platform. Third,
built upon a TCR such as the PyTorch deep learning framework,
TenGraph has the potential to integrate deep learning methods
[15, 25] for advanced graph analytics.

This design choice comes with possible drawbacks. First, tensor
operators are high-level APIs. Adopting these APIs, we have longer
function call paths, which bear performance overhead. Neverthe-
less, despite this potential overhead, TenGraph achieves competitive
performance in our experiments. Second, the implementation of
our query engine relies on the expressivity of tensor operators
supported by TCRs. For example, our check_edge_existence pro-
cedure (see Algorithm 3) does not have the optimal complexity,
because using the tensor operator isin in Algorithm 3, we have
to check the existence of each vertex pair in the entire edge set,
instead of only searching in the neighbor list of the corresponding
source vertex. Moreover, PyTorch does not have a tensor operator
to perform set intersection over speci�ed segments of tensors. As a
result, TenGraph is not worst-case optimal [31] for now. We may
try extending TCR [4] by adding new tensor operators to make
TenGraph worst-case optimal in our future work.

6 CONCLUSION
We developed TenGraph, a graph query engine upon Tensor Com-
putation Runtime (TCR). It utilizes e�cient cross-hardware tensor
operator implementations in TCR and achieves a signi�cant perfor-
mance advantage over state-of-the-art systems under comparison.

ACKNOWLEDGMENTS
This work was supported by Grant 16209821 from the Hong Kong
Research Grants Council, a startup fund from HKUST(Guangzhou),
and a grant from Huawei Cloud Database Innovation Lab.

4582

REFERENCES
[1] 2018. Apache MXNet | A �exible and e�cient library for deep learning. https:

//mxnet.apache.org Last accessed on 2024/06/13.
[2] 2020. ldbc/lsqb - GitHub. https://github.com/ldbc/lsqb Last accessed on

2024/06/13.
[3] 2021. ldbc/ldbc_snb_bi - GitHub. https://github.com/ldbc/ldbc_snb_bi Last

accessed on 2024/06/13.
[4] 2023. Extending PyTorch — PyTorch 2.1 documentation. https://pytorch.org/

docs/2.1/notes/extending.html Last accessed on 2024/06/13.
[5] 2023. Huawei MindSpore AI Development Framework. In Arti�cial Intelligence

Technology, Ltd. Huawei Technologies Co. (Ed.). Springer Nature, Singapore,
137–162. https://doi.org/10.1007/978-981-19-2879-6_5

[6] 2023. PyTorch documentation — PyTorch 2.1 documentation. https://pytorch.
org/docs/stable/index.html Last accessed on 2024/06/13.

[7] 2024. Memgraph. https://memgraph.com/ Last accessed on 2024/06/13.
[8] 2024. memgraph/memgraph - GitHub. https://github.com/memgraph/

memgraph Last accessed on 2024/06/13.
[9] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,

G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D.G. Murray, B.
Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. 2016.
TensorFlow: A system for large-scale machine learning. In Proceedings of the
12th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2016. 265–283. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/abadi

[10] Renzo Angles, János Benjamin Antal, Alex Averbuch, Altan Birler, Peter Boncz,
Márton Búr, Orri Erling, Andrey Gubichev, Vlad Haprian, Moritz Kaufmann,
Josep Lluís Larriba Pey, Norbert Martínez, József Marton, Marcus Paradies, Minh-
Duc Pham, Arnau Prat-Pérez, David Püroja, Mirko Spasić, Benjamin A. Steer,
Dávid Szakállas, Gábor Szárnyas, Jack Waudby, Mingxi Wu, and Yuchen Zhang.
2023. The LDBC Social Network Benchmark. https://doi.org/10.48550/arXiv.
2001.02299 arXiv:2001.02299 [cs].

[11] Maciej Besta, Robert Gerstenberger, Emanuel Peter, Marc Fischer, Michał Pod-
stawski, Claude Barthels, Gustavo Alonso, and Torsten Hoe�er. 2023. Demys-
tifying Graph Databases: Analysis and Taxonomy of Data Organization, Sys-
tem Designs, and Graph Queries. Comput. Surveys 56, 2 (2023), 31:1–31:40.
https://doi.org/10.1145/3604932

[12] Yihan Cao, Siyu Li, Yixin Liu, Zhiling Yan, Yutong Dai, Philip S. Yu, and Lichao
Sun. 2023. A Comprehensive Survey of AI-Generated Content (AIGC): A History
of Generative AI from GAN to ChatGPT. https://doi.org/10.48550/arXiv.2303.
04226 arXiv:2303.04226 [cs].

[13] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, CunxiangWang, YidongWang, Wei Ye, Yue Zhang, Yi Chang,
Philip S. Yu, Qiang Yang, and Xing Xie. 2023. A Survey on Evaluation of Large
Language Models. https://doi.org/10.48550/arXiv.2307.03109 arXiv:2307.03109
[cs].

[14] AlinDeutsch, YuXu,MingxiWu, andVictor Lee. 2019. TigerGraph: ANativeMPP
Graph Database. https://doi.org/10.48550/arXiv.1901.08248 arXiv:1901.08248
[cs].

[15] Shuheng Fang, Kangfei Zhao, Guanghua Li, and Je�rey Xu Yu. 2023. Community
Search: A Meta-Learning Approach. In 2023 IEEE 39th International Conference
on Data Engineering (ICDE). 2358–2371. https://doi.org/10.1109/ICDE55515.2023.
00182 ISSN: 2375-026X.

[16] Xiyang Feng, Guodong Jin, Ziyi Chen, Chang Liu, and Semih Salihoğlu. 2023.
KÙZU Graph Database Management System. CIDR.

[17] Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lin-
daaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs.
In Proceedings of the 2018 International Conference on Management of Data (Hous-
ton, TX, USA) (SIGMOD ’18). Association for Computing Machinery, New York,
NY, USA, 1433–1445. https://doi.org/10.1145/3183713.3190657

[18] Pranjal Gupta, Amine Mhedhbi, and Semih Salihoglu. 2021. Columnar storage
and list-based processing for graph database management systems. Proceedings
of the VLDB Endowment 14, 11 (2021), 2491–2504.

[19] Dong He, Supun C Nakandala, Dalitso Banda, Rathijit Sen, Karla Saur,
Kwanghyun Park, Carlo Curino, Jesús Camacho-Rodríguez, Konstantinos Karana-
sos, and Matteo Interlandi. 2022. Query processing on tensor computation
runtimes. Proceedings of the VLDB Endowment 15, 11 (2022), 2811–2825.

[20] N.P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates, S.
Bhatia, N. Boden, and A. Borchers. 2017. In-datacenter performance analysis of
a tensor processing unit. Datacenter Performance Analysis of a Tensor Processing
Unit (2017).

[21] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and
Semih Salihoglu. 2017. Graph�ow: An Active Graph Database. In Proceedings of
the 2017 ACM International Conference on Management of Data (Chicago, Illinois,
USA) (SIGMOD ’17). Association for Computing Machinery, New York, NY, USA,
1695–1698. https://doi.org/10.1145/3035918.3056445

[22] Dimitrios Koutsoukos, Supun Nakandala, Konstantinos Karanasos, Karla Saur,
Gustavo Alonso, and Matteo Interlandi. 2021. Tensors: An abstraction for general
data processing. Proceedings of the VLDB Endowment 14, 10 (2021), 1797–1804.

[23] Zhuohang Lai, Xibo Sun, Qiong Luo, and Xiaolong Xie. 2022. Accelerating
multi-way joins on the GPU. The VLDB Journal 31, 3 (May 2022), 529–553.
https://doi.org/10.1007/s00778-021-00708-y

[24] Heng Liao, Jiajin Tu, Jing Xia, Hu Liu, Xiping Zhou, Honghui Yuan, and Yuxing
Hu. 2021. Ascend: a Scalable and Uni�ed Architecture for Ubiquitous Deep
Neural Network Computing : Industry Track Paper. In 2021 IEEE International
Symposium on High-Performance Computer Architecture (HPCA). 789–801. https:
//doi.org/10.1109/HPCA51647.2021.00071 ISSN: 2378-203X.

[25] Fanzhen Liu, Shan Xue, Jia Wu, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Jian Yang, and Philip S. Yu. 2021. Deep learning for community detec-
tion: progress, challenges and opportunities. In Proceedings of the Twenty-Ninth
International Joint Conference on Arti�cial Intelligence (IJCAI’20). Yokohama,
Yokohama, Japan, 4981–4987.

[26] Yanjun Ma, Dianhai Yu, Tian Wu, and Haifeng Wang. 2019. PaddlePaddle: An
open-source deep learning platform from industrial practice. Frontiers of Data
and Domputing 1, 1 (2019), 105–115. http://www.jfdc.cnic.cn/EN/10.11871/jfdc.
issn.2096.742X.2019.01.011

[27] Amine Mhedhbi, Matteo Lissandrini, Laurens Kuiper, Jack Waudby, and Gábor
Szárnyas. 2021. LSQB: a large-scale subgraph query benchmark. In Proceedings of
the 4th ACM SIGMOD Joint International Workshop on Graph Data Management
Experiences & Systems (GRADES) and Network Data Analytics (NDA) (GRADES-
NDA ’21). ACM, New York, NY, USA, 1–11. https://doi.org/10.1145/3461837.
3464516

[28] A. Mhedhbi and S. Salihoglu. 2018. Optimizing subgraph queries by combining
binary and worstcase optimal joins. In Proceedings of the VLDB Endowment,
Vol. 12. 1692–1704. https://doi.org/10.14778/3342263.3342643 Issue: 11.

[29] S. Nakandala, K. Saur, G.-I. Yu, K. Karanasos, C. Curino, M. Weimer, and M.
Interlandi. 2020. A tensor compiler for uni�ed machine learning prediction
serving. In Proceedings of the 14th USENIX Symposium on Operating Systems
Design and Implementation, OSDI 2020. 899–917.

[30] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System
with In-Memory Performance.. In CIDR, Vol. 20. 29. https://db.in.tum.de/~freitag/
papers/p29-neumann-cidr20.pdf

[31] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case
Optimal Join Algorithms. J. ACM 65, 3 (2018), 16:1–16:40. https://doi.org/10.
1145/3180143

[32] L. Page, S. Brin, R. Motwani, and T. Winograd. 1998. The pagerank citation
ranking: Bringing order to the web. Technical Report (1998).

[33] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Des-
maison, L. Antiga, and A. Lerer. 2017. Automatic di�erentiation in pytorch. In
NIPS-W.

[34] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems, Vol. 32.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_�les/paper/2019/
�le/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[35] Ian Robinson, Jim Webber, and Emil Eifrem. 2015. Graph database internals.
Graph Databases, (2015), 149–170.

[36] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-
depth Study. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (SIGMOD ’20). Association for Computing Machinery,
New York, NY, USA, 1083–1098. https://doi.org/10.1145/3318464.3380581

[37] Shixuan Sun, Xibo Sun, Yulin Che, Qiong Luo, and Bingsheng He. 2020. Rapid-
match: a holistic approach to subgraph query processing. Proceedings of the
VLDB Endowment 14, 2 (2020), 176–188.

[38] Xibo Sun and Qiong Luo. 2023. E�cient GPU-Accelerated Subgraph Matching.
Proceedings of the ACM on Management of Data 1, 2 (June 2023), 1–26. https:
//doi.org/10.1145/3589326

[39] Gábor Szárnyas, Arnau Prat-Pérez, Alex Averbuch, József Marton, Marcus
Paradies, Moritz Kaufmann, Orri Erling, Peter Boncz, Vlad Haprian, and
János Benjamin Antal. 2018. An early look at the LDBC social network bench-
mark’s business intelligence workload. In Proceedings of the 1st ACM SIGMOD
Joint International Workshop on Graph Data Management Experiences & Systems
(GRADES) and Network Data Analytics (NDA) (GRADES-NDA ’18). ACM, Houston
Texas, 1–11. https://doi.org/10.1145/3210259.3210268

[40] Ha-Nguyen Tran, Jung-jae Kim, and BingshengHe. 2015. Fast SubgraphMatching
on Large Graphs using Graphics Processors. In Database Systems for Advanced
Applications (Lecture Notes in Computer Science), Matthias Renz, Cyrus Shahabi,
Xiaofang Zhou, and Muhammad Aamir Cheema (Eds.). Springer International
Publishing, Cham, 299–315. https://doi.org/10.1007/978-3-319-18120-2_18

[41] J. R. Ullmann. 1976. An Algorithm for Subgraph Isomorphism. J. ACM 23, 1
(1976), 31–42. https://doi.org/10.1145/321921.321925

4583

https://mxnet.apache.org
https://mxnet.apache.org
https://github.com/ldbc/lsqb
https://github.com/ldbc/ldbc_snb_bi
https://pytorch.org/docs/2.1/notes/extending.html
https://pytorch.org/docs/2.1/notes/extending.html
https://doi.org/10.1007/978-981-19-2879-6_5
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://memgraph.com/
https://github.com/memgraph/memgraph
https://github.com/memgraph/memgraph
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://doi.org/10.48550/arXiv.2001.02299
https://doi.org/10.48550/arXiv.2001.02299
https://doi.org/10.1145/3604932
https://doi.org/10.48550/arXiv.2303.04226
https://doi.org/10.48550/arXiv.2303.04226
https://doi.org/10.48550/arXiv.2307.03109
https://doi.org/10.48550/arXiv.1901.08248
https://doi.org/10.1109/ICDE55515.2023.00182
https://doi.org/10.1109/ICDE55515.2023.00182
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1145/3035918.3056445
https://doi.org/10.1007/s00778-021-00708-y
https://doi.org/10.1109/HPCA51647.2021.00071
https://doi.org/10.1109/HPCA51647.2021.00071
http://www.jfdc.cnic.cn/EN/10.11871/jfdc.issn.2096.742X.2019.01.011
http://www.jfdc.cnic.cn/EN/10.11871/jfdc.issn.2096.742X.2019.01.011
https://doi.org/10.1145/3461837.3464516
https://doi.org/10.1145/3461837.3464516
https://doi.org/10.14778/3342263.3342643
https://db.in.tum.de/~freitag/papers/p29-neumann-cidr20.pdf
https://db.in.tum.de/~freitag/papers/p29-neumann-cidr20.pdf
https://doi.org/10.1145/3180143
https://doi.org/10.1145/3180143
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1145/3318464.3380581
https://doi.org/10.1145/3589326
https://doi.org/10.1145/3589326
https://doi.org/10.1145/3210259.3210268
https://doi.org/10.1007/978-3-319-18120-2_18
https://doi.org/10.1145/321921.321925

[42] LeyuanWang and John D. Owens. 2020. Fast Gunrock Subgraph Matching (GSM)
on GPUs. https://doi.org/10.48550/arXiv.2003.01527 arXiv:2003.01527 [cs].

[43] Jim Webber. 2012. A programmatic introduction to Neo4j. In Proceedings of the
3rd annual conference on Systems, programming, and applications: software for
humanity (SPLASH ’12). ACM, New York, NY, USA, 217–218. https://doi.org/10.
1145/2384716.2384777

[44] Haicheng Wu, Daniel Zinn, Molham Aref, and Sudhakar Yalamanchili. 2014.
Multipredicate join algorithms for accelerating relational graph processing on
GPUs. In International Workshop on Accelerating Data Management Systems
Using Modern Processor and Storage Architectures, Vol. 10. https://www.adms-
conf.org/2014/adms14_wu.pdf

[45] JiayangWu,WenshengGan, Zefeng Chen, ShichengWan, andHong Lin. 2023. AI-
Generated Content (AIGC): A Survey. https://doi.org/10.48550/arXiv.2304.06632
arXiv:2304.06632 [cs].

[46] Lizhi Xiang, Arif Khan, Edoardo Serra, Mahantesh Halappanavar, and Aravind
Sukumaran-Rajam. 2021. cuTS: scaling subgraph isomorphism on distributed

multi-GPU systems using trie based data structure. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’21). ACM, New York, NY, USA, 1–14. https://doi.org/10.1145/
3458817.3476214

[47] Li Zeng, Lei Zou, M. Tamer Özsu, Lin Hu, and Fan Zhang. 2020. GSI: GPU-
friendly Subgraph Isomorphism. In 2020 IEEE 36th International Conference on
Data Engineering (ICDE). 1249–1260. https://doi.org/10.1109/ICDE48307.2020.
00112 ISSN: 2375-026X.

[48] Chaoning Zhang, Chenshuang Zhang, Sheng Zheng, Yu Qiao, Chenghao Li,
Mengchun Zhang, Sumit Kumar Dam, Chu Myaet Thwal, Ye Lin Tun, Le Luang
Huy, Donguk kim, Sung-Ho Bae, Lik-Hang Lee, Yang Yang, Heng Tao Shen, In So
Kweon, and Choong Seon Hong. 2023. A Complete Survey on Generative AI
(AIGC): Is ChatGPT from GPT-4 to GPT-5 All You Need? https://doi.org/10.
48550/arXiv.2303.11717 arXiv:2303.11717 [cs].

[49] Yue Zhao, George H. Chen, and Zhihao Jia. 2022. TOD: GPU-Accelerated Outlier
Detection via Tensor Operations. Proceedings of the VLDB Endowment 16, 3
(2022), 546–560. https://doi.org/10.14778/3570690.3570703

4584

https://doi.org/10.48550/arXiv.2003.01527
https://doi.org/10.1145/2384716.2384777
https://doi.org/10.1145/2384716.2384777
https://www.adms-conf.org/2014/adms14_wu.pdf
https://www.adms-conf.org/2014/adms14_wu.pdf
https://doi.org/10.48550/arXiv.2304.06632
https://doi.org/10.1145/3458817.3476214
https://doi.org/10.1145/3458817.3476214
https://doi.org/10.1109/ICDE48307.2020.00112
https://doi.org/10.1109/ICDE48307.2020.00112
https://doi.org/10.48550/arXiv.2303.11717
https://doi.org/10.48550/arXiv.2303.11717
https://doi.org/10.14778/3570690.3570703

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Graph Databases and Graph Queries
	2.2 Subgraph Matching
	2.3 Tensor Computation Runtime

	3 TenGraph
	3.1 Graph Data Model and Storage Backend
	3.2 Graph Structure Representation
	3.3 Subgraph Matching and Other Operations

	4 Experiments
	4.1 Experimental Setup
	4.2 Comparison with TQP*
	4.3 Comparison with Other Methods

	5 Benefits & Limitations of Building Graph Query Engine upon TCR
	6 Conclusion
	Acknowledgments
	References

