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ABSTRACT
The high-profile success of Deep Learning (DL) at Big Tech com-
panies, including recent Large Language Models (LLMs) such as
the GPT and Llama families, has led to high demand among Web
companies, consumer app companies, enterprises, healthcare, do-
main sciences, and even digital humanities and arts to adopt mod-
ern DL for their applications. The scale of DL workloads, domain-
specific datasets, and publicly available pre-trained base models
keeps growing. Naturally, tackling issues of scalability, usability,
and resource/cost efficiency of DL systems are critical to democ-
ratizing modern DL-powered AI. We find that some key lessons
from the decades of work on data system design, implementation,
and optimization–when adapted prudently–can go a long way to-
ward that goal. Specifically, our work shows that new analogues of
multi-query optimization for DL systems can substantially reduce
runtimes and costs, while improving ease of use. This article lays
out how we reimagine DL workloads that way and summarizes the
technical contributions powering this transformation.
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1 RESEARCH GAPS IN PRIOR ART
Democratizing DL systems is not a new goal–it is shared across
many research communities, including at least distributed systems,
high-performance computing (HPC), compilers, and computer ar-
chitecture. But we observed that much of the prior work miss the
forest for the trees! More precisely, most work on systems issues in
DL had focused on making single-model execution for training or
inference faster. While that is certainly useful, it is not sufficient
because it does not account for actual end-user behaviors in DL prac-
tice. From our conversations with 30+ AI/data science practitioners
across diverse settings, we observed that this gap often leads to
high wastage of GPU resources, reduced DL user productivity, and
in turn, higher overall runtimes and costs.

2 BACKGROUND AND OUR VISION
Let us start with some AI 101-style facts. We will then make the
connection to data systems-style techniques.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685914

DL is a highly empirical endeavor, with numerous types of knobs
that affect accuracy, reliability, runtimes, and costs. Since the Pareto
tradeoffs on those (and other) metrics are application specific, there
is no single universal setting for such knobs. Thus, the ability to
rapidly tweak such knobs for one’s own data and application is
critical to getting “shippable” models. In ML technical parlance,
such knob tuning is collectively calledmodel selection: an inevitable
overarching process to balance overfitting vs. underfitting when
building any ML model for an application’s data distribution [7].

In DL, model selection involves 3 main types of knobs: (1) alter
the data input and/or output representation, since DL operates on
tensorized data; (2) alter the neural computational graph architec-
ture, including when transfer learning from pre-trained models;
and (3) tune learning hyperparameters, which is common in classi-
cal ML too. Naturally, all this often leads to many combinations of
configurations being tried, regardless of whether they are specified
manually, with AutoML heuristics, or something in between.

Herein lies our fundamental reimagination: we cast such multi-
configuration DL workloads as “multi-query” execution for DL
“queries” on DL systems, akin to relational queries on RDBMSs.
Figure 1(A) makes this intellectual stack analogy more precise.

With the above analogy in mind, we have been laying the tech-
nical foundations of multi-query optimizations for DL workloads on
DL systems. Our techniques are mostly complementary to work
from those other communities, since they exist at other levels in
the stack. As we DB folks know and love, query optimization takes
a more holistic worldview on improving data systems by exploiting
the physical, logical, and/or semantic properties of the workloads.

Our techniques also span the gamut of optimizing compute, mem-
ory/storage, and/or network resources. It includes better co-placement
of data and computations, reducing redundancies in data move-
ment and/or computations, new forms of hybrid parallelism for
computations, and semantics-aware optimization of computations.
Overall, our techniques help reduce runtimes, costs, and energy
footprints of DL, while raising user productivity and ultimately
helping democratize modern AI.

3 TYPES OF DL WORKLOADS
Based on our conversations with DL practitioners, our in-depth
study of the DL literature, and our first-hand experiences with large-
scale DL use cases in domain sciences, we decompose multi-query
execution in DL workloads into 3 main groups:

Creation/Updates: This group involves hyperparameter tuning
and neural architecture design/tuning. The former is inevitable in
almost all DL scenarios. The latter is particularly common for DL on
time series data, other semistructured sequences, and some tabular
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Figure 1: (A) Intellectual stack analogy of RDBMS and DL systems. (B) Our envisioned model selection-first architecture.

data tasks. These workloads also involve data-centric tweaking, e.g.,
subsetting the data on some features, subsetting the features of the
data (especially for multimodal use cases), and/or adding/updating
the (labeled) data over time.

Transfer: This group involves feature transfer, viz., using pre-
trainedmodels as featurizers for raw data, finetuning, viz., continued
training of a pre-trained model on new data, and more general
transfer learning, viz., dropping/modifying a pre-trained model’s
layers and/or weights, adding new task-specific layers, mixing and
matching pre-trained layers with new layers, etc. Such workloads
are now the norm for image, video, and text data using CNNs,
Transformers, and/or Diffusion models downloaded from model
hubs such as HuggingFace. Due to task-specific customization, this
group typically uses the first group as an inner loop, e.g., to compare
alternate layers of features, new layers, and/or hyperparameters.

Prediction: This group involves repeated inference requests
made to the trained and deployed models. Batching of requests at
deployment time is common. Repeated inference with pre-trained
models also arises in the second group, representing an overlap
between these workloads. Finally, many prediction “explanation”
schemes also alter the data and perform repeated inference.

4 TECHNICAL CONTRIBUTIONS
With the analogy and the DL workload characterizations in mind,
we now dive into our series of novel multi-query optimization
(MQO) and related techniques for DL systems. We group the tech-
niques by the abstraction level of the optimization. To the best of
our knowledge, these techniques are all a first of their kind in the
whole DL systems landscape. These techniques were published
across 8 full research papers at SIGMOD/VLDB, 1 CIDR paper, 2
invited TODS/SIGMOD Record papers, 3 demo/workshop papers at
SIGMOD/VLDB/MLSys, and 5 public health journal papers based
on DL models built using our systems on large datasets collected
by our collaborators.

4.1 Physical-level Hybrid Parallelism

In Cerebro-MOP [16] we tackled a key bottleneck for DL training
and model selection: scaling to large datasets. Prior art such as
PyTorch DDP and Horovod for data-parallel training on a cluster

are too communication-heavy and highly sub-optimal for model
selection because they do not exploit the multi-model degree of
parallelism. Breaking this (false) dichotomy of task-parallelism
and data-parallelism we created a novel hybrid: model hopper par-
allelism (MOP). The basic idea of MOP is to enable scheduling
of different models on different shards of the data concurrently
and coordinating in a resource-aware and fault-tolerant manner
across epochs and models. All models learn on all the data in a
sequential-equivalent manner, thus not hurting accuracy. MOP is
the first known form of bulk asynchronous parallelism, fundamen-
tally advancing the parallel data systems literature. Theoretically
and empirically we showed MOP is effectively resource-optimal in
this setting. We also hybridized MOP with Horovod/DDP for cases
with fewer models than workers.

Saturn [14] and Hydra [13] tackled the complementary setting
of small dataset but large model that does not fit on a single GPU’s
memory. Prior art such as Google GPipe, Microsoft DeepSpeed,
and PyTorch FSDP handle large models by sharding them across
GPUs. Again, their approach of training one model at a time is
too communication-heavy and sub-optimal in the model selection
context because they too do not exploit multi-model degree of
parallelism. They also require tuning many system parameters that
are unintuitive for end-users of DL who may not have systems
expertise. We devised two systems in this context: Hydra and its
successor Saturn.

Hydra broke the (false) dichotomy of task- andmodel-parallelism
to create a novel hybrid: shard alternator parallelism (SHARP), also
a new form of bulk asynchronous parallelism. Analytically and
empirically, we showed Hydra is near resource-optimal and signifi-
cantly faster than those prior tools for large-model DL. But Hydra
requires our ownmodel sharding layer, which is painful to maintain
as the underlying DL tools evolve.

Saturn, Hydra’s successor, tackles those issues by operating as a
meta-level hybrid-parallel optimizer on top of unmodified PyTorch
FSDP and GPipe. It selects the exact parallelization scheme to use
for a given workload, akin to how a relational query optimizer picks
between alternate physical relational operator implementations.
We unified such automated selection of parallel execution with
auto-tuning of their system parameters and GPU apportioning
across models in a model selection workload. Put together, Saturn
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raises GPU utilization by 40%-50% compared to current practice of
one-at-a-time single-model parallelism on such tools.

Kingpin [10] targets a common ML/DL practice: building sepa-
rate models for data subgroups (e.g., per state). We observed that
this is essentially a form of GROUP BY, albeit for ML model se-
lection instead of SQL aggregates. Prior art manually materializes
data subsets for such GROUP BY execution, which is sub-optimal
due to wasted memory/storage and/or high communication costs.
Inspired by how RDBMSs implement hashing-based GROUP BY
operators, we proposed another novel hybrid of task- and data-
parallelism: gradient accumulation parallelism (GAP). Analytically
and empirically, we showed that GAP and associated techniques
that build on it are substantially more resource-efficient for not just
DL but also GBDT and GLMs. GAP is yet another novel form of
bulk asynchronous parallelism.

Lotan [24] targets graph neural networks (GNNs), which cap-
ture non-IID data. GNNs are increasingly common in both domain
sciences and Web companies, but their graph-oriented data access
patterns are more complex than the sequential scans for SGD on IID
data. The prior art was bespoke custom graph systems for GNNs.
But we asked a seemingly simple question: How far can we push an
existing graph analytics engine to scale GNNs? Perhaps surprisingly,
we found that graph engines can indeed help scale GNN workloads
defined via DL tools. Our prototype named Lotan unified PyTorch
and GraphX to enable decoupled scaling and parallelization: put DL
arithmetic on the DL tool and graph gather-scatter operations on
the graph engine. To reason about our optimizations, we devised
a novel physical operator algebra for GNN dataflows that is more
coarse-grained than the tensor algebra of DL tools but fine-grained
enough for us to optimize. That also enabled us to devise the first-
known operator batching for GNNs, another new form of MQO in
DL. Empirically, we found Lotan to be the most scalable system for
GNNs, surpassing even industrial tools from Alibaba, while offering
competitive time-to-accuracy on large GNN benchmarks.

4.2 Query Rewrites and Materialized Views

Vista [20] is the first system to study and optimize a now-ubiquitous
DL workload: transfer learning. In image/video analytics, DL users
transfer features from pre-trained CNNs to help boost accuracy
for their new target task, but they often need to compare different
layers because their accuracy can differ significantly. This causes
redundant computations during CNN re-inference in the layers that
are common. Thus, we proposed a novel query rewriting and MQO
scheme to share those layers by automatically creating “material-
ized views” and injecting them into the workload. We showed that
Vista’s approach offers up to 5x speedups on real image analytics
workloads. This is the first time subsets of neural computational
graphs were reimagined as view definitions that can be material-
ized and reused, inspired by how subsets of relational queries are
defined and reused as materialized views.

Nautilus [21] expands upon Vista’s direction to all types of
DL architectures beyond CNNs, including Transformers and DAG
structures, as well as for more general transfer learning schemes
such as layer-wise freezing. Given a set of model finetuning or

transfer learning tasks, Nautilus automatically constructs a “super-
model” that shares the common layers, a novel form of MQO we
call “model fusion.” It reduces both redundant computations and
intermediate data movement between DRAM and GPU. We also
devised incremental view maintenance-style techniques to support
evolving training data, say, when labeled data is added over time.
Overall, Nautilus offers up to 5x speedups by trading off some
storage space and also raises GPU utilization substantially. With
the recent boom of generative AI workloads that transfer learn
from pre-trained Transformers (e.g., the Llama family) or Diffusion
models (e.g., Stable Diffusion), we believe such MQO techniques
to make the process faster and cheaper can help more users tailor
generative AI to their in-house (and often private) labeled data.

4.3 Incremental View Maintenance
Krypton [15] targets a popular form of “explanation” for a CNN’s
predictions on an image: hide a patch of pixels, perform re-inference,
slide the patch to do re-inferences, and get a heatmap of which
pixels “matter” most. We observed that most features created by the
CNNwill not changemuch due to spatial locality. So, we reimagined
this as a form of incremental view maintenance (IVM): materialize
all CNN features on the original image and incrementally update
only those that actually change. This is the first known form of
IVM for neural computational graphs in DL systems. Going fur-
ther, we also batched the patched re-inference requests to share
computations and data movement between DRAM and GPU–the
first-known merger of IVM with MQO in the data systems literature.
We showed all this works on both CPUs and GPUs, yielding even
10x speedups on real radiology and image analytics datasets. This
work was accorded a SIGMOD’19 Best Paper Honorable Mention
and a SIGMOD Research Highlight Award [18]. In an invited longer
paper, we expanded Krypton’s IVM framework to also optimize
video stream inference, exploiting the pixel redundancy across
adjacent frames [17].

4.4 Semantics-based Approximations
Also in Krypton, we built on top of our IVM framework to pro-
pose two CNN semantics-based approximation heuristics to raise
speedups further. One is projective field thresholding: clip the breadth-
wise spread of changes across CNN layers to reduce FLOPs count,
inspired by vision neuroscience. The other is adaptive drill-down:
reduce heatmap resolution for “uninteresting” regions, inspired by
BI practices of drilling down or rolling up in data cubes.

4.5 System Design and Implementation
We enjoy building systems to prototype our ideas and using them
for real workloads when possible. All the techniques listed above
have been prototyped as open source tools on top of PyTorch or Ten-
sorFlow. We have also demonstrated some of our tools at VLDB [9]
andMLSys [22]. Our system design and implementation philosophy
has 3 key guidelines to maximize potential for impact:

(1) Do not change the DL tool’s internal code. This ensures back-
ward compatibility as those tools evolve and lets us piggyback
on complementary advances made by the Big Tech firms on their
compilers or hardware support. This decision proved helpful with
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PyTorch in particular, which has grown massively in the last few
years in terms of both features and user base.

(2) Overload already popular user-facing APIs such as Keras and
AutoML heuristics for specifying the model selection workloads.
Specifically, we have built support for grid search, random search,
and heuristics such as Hyperopt and ASHA. All this can lower fric-
tion for DL users to adopt our tools. Of course, for novel capabilities
not present in those APIs, e.g., like for Nautilus or Krypton, we
devised our own intuitive high-level APIs in Python.

(3) Be ecumenical on backend infrastructure. For system proto-
typing, our work has spanned filesystem acccess on Kubernetes
clusters, mediated access via a data processing system (Spark, Ray,
and Greenplum), and direct cloud IaaS access. None of our tech-
niques are dependent on a particular data backend. This enables
portability across stacks and meeting DL users where they are.

The above said, we have also assembled some of these tech-
niques into a loosely coupled but unified stack we call the Cerebro
platform [8, 9]. Figure 1(B) shows its layered architecture. It is under
active development, and an initial version on a Kubernetes cluster is
being rolled out to more domain scientists at UCSD via the Voyager
Supercomputer at the San Diego Supercomputer Center (SDSC).
Cerebro is the first model selection-first DL platform to enable full
out-of-the-box scalability on all axes of interest: datasets, models,
tasks, and resources.

5 PRACTICAL ADOPTION SO FAR
Apart from building systems and publishing about our techniques,
we have also worked with relevant collaborators in both domain
sciences and industry to translate some of this work to practice.

(1) In an NIH-funded collaboration with UCSD Public Health
researchers, we used Cerebro to analyze TB-scale labeled time series
data from body-worn accelerometers to study human sedentary
behaviors and their impact on health. Cerebro’s high-throughput
model selection functionality enabled us to raise balanced accuracy
for a binary classification task (sitting or not) from their prior art
of 76% to a massive 92%. The models built with Cerebro are now
the state of the art in their field. This collaboration has led to 5 full
papers in prominent public health journals [3–6, 19]. Our models
and code are all open sourced [2], and they are already being used
by external public health researchers in this field in the USA and
Australia. In a follow-on NIH-funded project, we are extending
such modeling and usage of Cerebro and Nautilus to more tasks
and cohorts. This includes using our pre-trained models as the base
models for transfer learning to reduce both the amount of labeled
data needed and compute resources needed.

(2) Pivotal/VMware adopted MOP for DL workloads on data res-
ident on Greenplum and shipped it as part of their Apache MADlib
library for in-RDBMS DL [1, 11, 12]. They used this tool for some
enterprise analytics use cases involving multimodal data analytics
combining relational and NLP/vision/time series use cases. In turn,
this collaboration led to additional interesting research on the larger
tradeoff space of how to bridge the gap between DL tools and data
resident in parallel data warehouses/lakehouses [23].

(3) In another domain science collaboration at UCSD, we have
applied techniques from Hydra to computational physics use cases
involving fluid dynamics simulations. More use cases in public
health, political science, and neuroscience involving time series,
text, and video data are also in the works.

(4) Some Big Tech companies, including Meta and Netflix, have
explored adopting some of our techniques and tools (specifically
Hydra, Saturn, and/or MOP) for internal usage. Their use cases
include computational advertising and recommendation systems.

(5) Finally, we have co-founded a new startup named RapidFire AI
that is building the industry’s first “agile DL platform” in the cloud
to help democratize DL-based AI. Our product applies techniques
from this research and also extends it along new directions. As
we roll out our product to customers, we hope to learn more from
their practical challenges to help inform future research at this
fast-growing and important intersection of the DB and AI worlds.
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