
PrismX: A Single-Machine System forQuerying Big Graphs
Shuhao Liu

Shenzhen Institute of Computing
Sciences, China

shuhao@sics.ac.cn

Yang Liu
Beihang University, China

ly_act@buaa.edu.cn

Wenfei Fan
Shenzhen Institute of Computing

Sciences, China
University of Edinburgh, UK
Beihang University, China

wenfei@inf.ed.ac.uk

ABSTRACT
We demonstrate PrismX (PRAM with SSDs as Memory eXtension),
a single-machine system for graph analytics. PrismX allows users
to make practical use of existing PRAM algorithms without any
change. To cope with the limited DRAM capacity, it employs
NVMe SSDs as memory extension. Leveraging graph preprocess-
ing, PrismX implements a series of system optimization strategies,
which automatically and transparently adapt to the runtime work-
load, no matter whether the computation is CPU-bound or I/O-
bound. We demonstrate PrismX for its (1) ease of programming by
reusing PRAM algorithms, (2) efficiency by comparing with the
state-of-the-art graph systems, single-machine or multi-machine,
in-memory or out-of-core; (3) parallel scalability of in-memory
PRAM algorithms, reducing runtime when more CPU cores are
available; and (4) applications in credit risk assessment.

PVLDB Reference Format:
Shuhao Liu, Yang Liu, and Wenfei Fan. PrismX: A Single-Machine System
for Querying Big Graphs. PVLDB, 17(12): 4485 - 4488, 2024.
doi:10.14778/3685800.3685906

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/SICS-Fundamental-Research-Center/Planar.

1 INTRODUCTION
Big graph analytics is often conducted by big companies using
multi-machine systems with a cluster of machines. For instance, to
compute connected components of a graph with billions of vertices
and trillions of edges, Google employs a 1000-node cluster with
12000 processors and 128 TB of aggregated memory [12]. However,
small companies typically cannot afford such enterprise clusters.
Moreover, the multi-machine systems “have either a surprisingly
large COST, or simply underperform one thread” [8]. This is be-
cause such systems adopt the shared-nothing architecture; the more
machines are used, the heavier their communication cost is, and
the less utilized the machines are due to unbalanced workload.

In light of these, a host of single-machine graph systems have
been developed, classified into in-memory systems when graphs
can be loaded entirely into the main memory of a machine, or
out-of-core systems when graphs are too large to fit into the main

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 12 ISSN 2150-8097.
doi:10.14778/3685800.3685906

memory at once. These systems typically adopt a vertex-centric (VC)
parallel model [4, 7]. VCmakes users think like a vertex: a program
is “pivoted” at a vertex; it may only directly access the data at the
vertex and its adjacent edges, but has to exchange information with
“remote” vertices via message passing. However, it is nontrivial
to program with VC for problems that are constrained by “joint”
conditions on multiple vertices, e.g., graph simulation [9].

To solve the problem, some systems, e.g.,MiniGraph [16], extend
the graph-centric (GC) parallel model [2, 3] to single-machine sys-
tems. These systems parallelize sequential graph algorithms, handle
out-of-core tasks at the subgraph level via partial and incremental
evaluation, and enable beyond-neighborhood graph access; they
improve the locality of out-of-core computation, reduce I/Os, and
serve low-bandwidth external storage devices better than VC. The
GC systems target SATA SSDs whose sequential read bandwidth
is 0.5 GB/s, while the (theoretical) bandwidth of DDR5 DRAM is
51.2 GB/s, a difference of almost two orders of magnitude.

However, with the new generation of consumer-grade NVMe
SSDs, the bandwidth gap between DRAM and SSDs has been signif-
icantly narrowed. A 2023 Samsung 990Pro NVMe SSD has a read
bandwidth of 7 GB/s, which is only 7 times slower than DRAM.
With such fast SSDs, the GC systems constantly under-utilize I/O
bandwidth, and their incremental steps may become redundant.

Moreover, PRAM has been well studied for shared-memory archi-
tectures (see [13]). It allows multiple CPU cores to work in parallel,
and synchronize via shared memory. A host of PRAM algorithms
are already in place, and many of them guarantee the parallel scala-
bility, i.e., the more processors are used, the less runtime is taken [6].

What parallel model fits multi-core parallelism of a single ma-
chine better under the shared-memory architecture? Can we capi-
talize on the decades of work on PRAM and simplify parallel pro-
gramming for graph computations? Is it possible to develop a single-
machine system that performs comparably to the state-of-the-art
(SOTA) multi-machine systems that employ dozens of machines?

PrismX (Section 2). To answer the questions, we develop PrismX
(PRAM with SSDs as Memory eXtension), a single-machine system
for graph analytics. PrismX features the following.

(1) A unified programming model. PrismX advocates reusing exist-
ing PRAM [13] algorithms for both in-memory and out-of-core
graph computations. Given a query class Q, users can directly im-
plement an existing PRAM algorithm A for Q using the provided
parallel programming interface. The users do not have to handle
out-of-core computation manually. When a graph fits into the mem-
ory of a single machine, it executes algorithm A with all available
cores.When a graph size exceeds the DRAM capacity, it additionally

4485

https://doi.org/10.14778/3685800.3685906
https://github.com/SICS-Fundamental-Research-Center/Planar
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3685800.3685906
https://www.acm.org/publications/policies/artifact-review-and-badging-current

swaps data between DRAM and SSDs transparently.
Unlike VC, users of PrismX do not have to think like a vertex or

develop new parallel algorithms from scratch. Unlike GC systems,
there is no longer a need for incremental steps with PrismX.

(2) Preprocessing. PrismX proposes to preprocess an input graph 𝐺
via reorganization and custom pre-computations, as boosts for vari-
ous PRAM algorithms. It first reorganizes graph 𝐺 and serializes it
into a sequence of files on NVMe SSDs. It partitions 𝐺 into small
blocks called vertex atoms, groups the vertex atoms via clustering,
and relabels the vertices based on topological connectivity among
clusters. These enable efficient indexing and access to the graph
data; moreover, they enforce a hierarchical sketch of the dependen-
cies among graph substructures and intermediate results, which
opens the way to a series of dependency-aware optimizations.

(3) New optimizations. PrismX proposes a series of strategies to
maximize CPU and I/O utilization and adapt to various workloads.

For CPU-bound algorithms, PrismX automatically loads and
reuses the pre-computed auxiliary results from SSDs whenever
possible to skip redundant computation at the cost of extra I/Os.
Moreover, by analyzing hierarchical dependencies among graph
substructures, it employs a lazy, asynchronous evaluation strat-
egy. Even though this breaks the synchronous locksteps of PRAM
operations, it retains the correctness guarantees of the algorithm

For I/O-bound algorithms, PrismX supports fine-grained (vertex
atom-level) selective loading of graph and auxiliary data, which re-
duces the redundant I/O overhead. Also, it adaptively allocates more
CPU cores to parallel I/O operations. These strategies leverage the
scattered and parallel I/O capabilities of NVMe SSDs, relieving the
read bandwidth bottleneck at the cost of slower graph computation.

Demonstration (Section 3). We will invite demo participants to
experience PrismX for its (a) ease of programming, (b) performance
compared with the SOTA single-machine systems (in-memory and
out-of-core) and multi-machine systems, (c) parallel scalability re-
tained for PRAM algorithms that have the property; and (d) appli-
cation in credit risk assessment in lieu of multi-machine systems.

2 SYSTEM OVERVIEW
This section presents the model and the architecture of PrismX.

2.1 Programming Model
PrismX aims to directly leverage the decade of work on PRAM for
querying large graphs. PRAM supports multi-core parallelism via
single-instruction-multiple-data (SIMD), i.e., all processors execute
the same operation simultaneously on different data. A PRAM algo-
rithm streamlines a sequence of locksteps; each step is either a RAM
operation or a read/write to a memory location (hence the name
“random-access”). Unlike VC, it supports beyond-neighborhood di-
rect memory accesses, synchronization via shared memory, and
load balancing without skewed workload. A large number of PRAM
algorithms have been developed, and many are parallel scalable [6].

PRAM naturally fits a single-machine shared-memory system,
yet with a few practical considerations. PrismX introduces a unified
programming model that seamlessly bridges in-memory and out-of-
core graph computations, adapting PRAM to physical machines in

PrismX: WCC Algorithm

PrismX: Graft

1 // Vertex Status: 𝑺𝒗 = 	𝒑	 where 𝒑 𝒗 = 𝒗 for each 𝒗	 ∈ 𝑽
2 // Input: graph G = (V, E)
3 While (!G.E.empty()) {
4 Eapply(G.E, Graft); // Merge pseudo trees.
5 Vapply(G.V, PointerJump); // Simplify pseudo tress.
6 Eapply(G.E, Contract);} // Delete unused edges.

1 // Input: Edge e = (src -> dst)
2 min_id, max_id := FindMinAndMax(e.src, e.dst); // Find the min and max id
3 WriteMin(p[max_id], p[min_id]); // Set parent of max id to min id, which

means larger id points to smaller id.

PrismX: PointerJump
1 // Input: Vertex v
2 While (p[v] != v) { p[v] = p[p[v]]; }

PrismX: Contract
1 // Input: Edge e = (src -> dst)
2 if p[src] == p[dst] then Delete(e);

Figure 1: Programming interface of PrismX.

the real world. PRAM is a theoretical model that assumes unlimited
memory with unit access cost and a polynomial number of proces-
sors. However, these are beyond reach in practice, as a single ma-
chine has limited memory capacity and I/O bandwidth, and its num-
ber of CPU processors cannot scale with the size of the input graphs.

PrismX narrows the gap between theory and practice. Users
can directly implement an existing PRAM algorithmA by virtually
retaining its theoretical assumptions. They can treat the input graph
𝐺 as arrays of vertices and edges and declare intermediate status
variables as arrays. They can program lockstep parallel operations
as if all data were already available in the shared memory.

Under the hood, PrismX transparently manages data within the
memory hierarchy. It handles the graph and intermediate results
in small vertex atoms, each of which is a collection of data associ-
ated with a single vertex. With in-memory atoms, it executes the
PRAM algorithm A using all available CPU cores for multi-core
parallelism. For atoms residing in SSD, it preemptively swaps them
between DRAM and SSD storage, ensuring continuous, balanced
CPU and I/O operations without explicit user intervention. Once the
atoms are loaded into memory, it proceeds to run A on the atoms.

Programming interface. PrismX provides three sets of primitives.

(1) Status declaration: Consider a graph 𝐺 = (𝑉 , 𝐸, 𝐿), where 𝑉
(resp. 𝐸 and 𝐿) is a finite set of vertices (resp. edges and labels).
Given 𝐺 , PrismX organizes graph 𝐺 as a set of data arrays for 𝑉 , 𝐸,
and 𝐿. A PrismX programA declares and initializes status variables
for 𝐺 , which serve as intermediate results of A.

(2) Parallel operators: The lockstep operations of A are directly
streamlined as if users were programming with PRAM. Operator
VApply(𝑓𝑉) (resp. EApply(𝑓𝐸)) applies a unit function 𝑓𝑉 (resp. 𝑓𝐸)
to a set of vertices (resp. edges) in parallel, where the unit function
can invoke any data accessors and mutators to be defined next.

(3) Data accessors and mutators: PrismX provides APIs for users
to manipulate 𝐺 and its associated status variables, including
read/write accesses to 𝑘-hop neighbors, and vertex/edge attributes.

Example: weakly connected components (WCC). A PrismX program
for WCC is exemplified in Figure 1. It implements the PRAM al-
gorithm A of [11]. To find the WCC of a subgraph 𝐹𝑖 = (𝑉𝑖 , 𝐸𝑖),
A partitions |𝑉𝑖 | into disjoint sets, where vertices within a set are
weakly connected to each other. The set membership of a vertex 𝑣

4486

is marked by the flag 𝑝 (𝑣), declared as a vertex status (Line 1).
Each iteration of A merges vertex sets based on inter-set edges

(“Graft”, Line 4), makes membership flags consistent (“PointerJump”,
Line 5), and removes edges internal to a set (“Contract”, Line 6). It
proceeds until all edges in 𝐸𝑖 are removed (Line 3).

2.2 System Architecture
As shown in Fig. 2, PrismX is implemented with programming inter-
face, a preprocessor, data processing modules and control modules.
(1) APIs. PrismX provides users with primitives for status variable
declarations, synchronized parallel operators for lockstep concur-
rent graph manipulations, and a collection of convenient functions
for data access and mutations, as remarked in Section 2.1.
(2) Preprocessor. As mentioned in Section 1, PrismX employs graph
preprocessing techniques to enhance runtime performance. During
graph reorganization, it partitions the input graph 𝐺 into vertex
atoms, organizes these atoms into clusters based on their topo-
logical connectivity, and then relabels vertices and edges to reflect
these connectivities. By establishing a hierarchical representation of
graph substructures and their dependencies, PrismX sets the stage
for dependency-aware system optimizations that can significantly
boost the performance of various PRAM algorithms.
(3) Data processing modules. PrismX implements a data pipeline to
continuously read from and write to the NVMe SSDs. It partitions
the memory into (a) an off-stage area as a buffering space for vertex
atom loading and discharging, and (b) an on-stage area as shared
memory for executing PRAM programs. These areas are used to
overlap CPU and I/O operations, dynamically adjusted across lock-
step operations. PrismX increases the size of the off-stage area when
the lockstep is I/O-bound, i.e., when the I/O cost dominates; other-
wise, it increases the budget for the on-stage area if the lockstep is
CPU-bound. It also adopts incremental writing to reduce I/O.
(4) Control modules. PrismX supports the following: (1) ConfigMng
maintains system configs and the profiling results for cost estima-
tion; (2) DependencyMng keeps track of the topological dependen-
cies among clusters of vertex atoms; and (3) Scheduler actively mon-
itors runtime statistics to decide system bottlenecks. Based on these
statistics, it implements a series of optimization strategies, including
reusing pre-computed data, coordinating lazy evaluations, selective
loading of graph and auxiliary data, and CPU resource scheduling.

2.3 Optimizations
PrismX adopts different strategies to optimize CPU- and I/O-bound
computations. It also ensures low-overhead simulation of PRAM.
Lazy evaluations. In addressing the limitations of synchronous
lockstep operations, PrismX adopts a lazy, asynchronous evaluation
strategy. This method allows the system to temporarily break the
synchronization barriers after PRAM locksteps, while still retaining
its correctness. It defers certain computations until the correspond-
ing intermediate results are explicitly required, thereby reducing
repetitive updates. To this end, it exploits hierarchical dependencies
within the graph structure, prioritizing computations based on their
immediate necessity and potential impact on overall performance.

Selective data loading. For I/O-bound workloads, PrismX intro-
duces a selective loading mechanism. By enabling fine-grained ac-

PrismX PreprocessorNVMe SSDs

System
PrismX

Off-Stage Area

On-Stage Area

Control Modules

AtomReader

DependencyMng

AtomWriter

Scheduler

UpdateCache Executors

APIs Status
Declarator VApply EApply

kNbr Delete Mutate

ConfigMng

CliqueSet

Figure 2: PrismX system architecture.

cess to vertex atom-level data, it can load only the active graph and
auxiliary data required for a given lockstep operation. This targeted
approach reduces unnecessary I/O operations, since it is common
for a part of the graph to remain inactive for an operation. Moreover,
it may opt to recompute some pre-computed auxiliary data if the
cost of loading it from storage exceeds the cost of recomputation.

CPU resource scheduling. PrismX dynamically allocates CPU
resources between parallel computation and I/O operations. By
assigning more CPU cores to handle scattered reads/writes over
NVMe SSDs, it mitigates the read bottleneck for I/O-bound al-
gorithms. To this end, it implements an adaptive algorithm that
continuously assesses the workload between CPU and I/O demands,
ensuring balanced computation and data transfer operations.

PRAM simulation. PRAM assumes a polynomial number of pro-
cessors. PrismX simulates PRAM with a machine of 𝑝 CPU cores.
Synchronization. Planar (1) places an implicit synchronization bar-
rier after each parallel VApply or EApply; and (2) ensures that all
read accesses precede any write within each parallel operator.
Load balancing. Each parallel operator can generate a number of
parallel tasks. To allocate these tasks to 𝑝 processors with a balanced
workload, we employ a size-𝑝 thread pool in Executors. Initially, all
generated tasks are placed in a task queue. Each thread then polls
the queue whenever it becomes idle and executes the obtained task.
Lock-free parallelism. This is to further reduce write contention and
speed up parallel processing. Consider concurrent writes to data
Φ. If Φ cannot be implemented as an atomic data structure, PrismX
adopts the copy-on-write technique. That is, whenever a thread is
to modify Φ, it creates a thread-local copy Φ′ of Φ, writes a new
value to Φ′, and makes an atomic switch from the old to the new.

3 DEMONSTRATION OVERVIEW
This section presents our demonstration setting and plan.

3.1 Demonstration Setting
Algorithms. To demonstrate how PrismX works, we have imple-
mented PRAM algorithmsWCC, Graph Convolutional Networks
(GCN), PageRank (PR) and 𝑘-hop neighborhood counting (kCount),
which are widely used in application such as network analysis, rout-
ing protocols, Web search, and credit risk assessment, respectively.

Graphs. We will use (1) medium web-sk with 50M nodes and 1.9B
edges; and (2) large clue-web with 1.7B nodes and 7.9B edges.

System comparison. We will compare PrismX with the SOTA
single-machine and multi-machine systems: (1) out-of-core systems
MiniGraph [16], Blaze [5] and GridGraph [15]; (2) in-memory
Galois [10] and CoroGraph [14]; and (3) multi-machine Gluon [1]
and GraphScope [2] (the open-source version of GRAPE [3]).

4487

PrismX Runtime Log
14:42:58.119577 54802 wcc.cpp:59] System begins
14:43:00.476674 54805 executor.cpp:13] Executor starts executing subgraph 0
14:43:00.630126 54805 executor.cpp:26] Executor: PEval graph 0
14:43:18.418604 54805 wcc_app.cpp:34] graft finished
14:43:19.259085 54805 wcc_app.cpp:39] pointjump finished
14:43:41.495108 54805 mutable_csr_graph.h:268] left edges: 616378240, new del num:0
14:43:41.617420 54805 wcc_app.cpp:44] contract finished
14:43:46.562619 54805 wcc_app.cpp:34] graft finished
14:43:47.048061 54805 wcc_app.cpp:39] pointjump finished
14:43:53.862991 54805 mutable_csr_graph.h:268] left edges: 810673, new del num:0
14:43:53.906290 54805 wcc_app.cpp:44] contract finished
14:43:53.955413 54805 wcc_app.cpp:34] graft finished
14:43:54.166812 54805 wcc_app.cpp:39] pointjump finished
14:43:54.334665 54805 mutable_csr_graph.h:274] Left edges: 29
14:43:54.334686 54805 wcc_app.cpp:44] contract finished
14:43:54.634280 54805 wcc_app.cpp:49] PEval finished
14:43:54.634286 54805 executor.cpp:41] Executor completes executing subgraph 0
14:43:54.638021 54806 scheduler.cpp:101] ============ Current Round: 1 ============
14:43:55.194109 54802 planar_system.h:61] =========== Hole Runtime: 56.921219935 s ===========

0

40

80

120

160

4 8 12 16

Ti

m
e

(s)

Cores

Out-of-Core System Comparison PrismX
GridGraph
Blaze
MiniGraph

50

500

5000

16 32 48 64

Ti

m
e

(s)

Cores

In-memory Systems Comparison PrismX
Ligra
Galois

Figure 3: A snapshot of analytics panel (WCC, single-machine).

Environment. For out-of-core workloads, we will use a worksta-
tion powered by an Intel Core i7-11700@2.50GHz CPU (16 cores,
16MB LLC) and 64GB of DDR4-3200 memory. A 2TB Samsung
990Pro NVMe SSD will be used as memory extension, with an aver-
age sequential read throughput of 6.9GB/s. For in-memory execu-
tions, we will use a server with 4× Intel Xeon Gold 5320@2.20GHz
CPUs (26 cores, 39MB LLC each) and 512GB of DDR4-2933 memory.

To compare with multi-machine systems, we will showcase re-
mote cloud deployments. We will run PrismX on a single 8-vCPU
32GB-memory instance. Gluon will use multiple instances of the
same type, while GraphScope will use multiple 8-vCPU 64GB-
memory instances since it requires >32 GB in all demonstrations.

Setup. We will configure PrismX to use 32GB of memory as buffer,
and show how the buffer is dynamically adjusted across locksteps.

3.2 Demonstration Plan
We will invite participants to experience the following.
(1) Ease of programming. Given the PRAM algorithm A [11] for,
e.g., WCC, we will walk the participants through the process of
implementingA with the interface of PrismX (as shown in Figure 1).
One can experience how straightforward PrismX primitives are.

(2) Performance.Wewill demonstrate the efficiency and scalability
of PrismX, and the impact of key factors on its performance.

Comparison with single-machine systems. Users are invited to run
PrismX programs and the SOTA systems in a uniform setup. Table 1
compares the average performance forWCC. Over large clue-web,
PrismX outperforms the SOTA in-memory Galois by 2.20×, and
out-of-core Blaze by 4.58×. In-memory system CoroGraph can-
not handle graphs at this scale. Over web-sk, PrismX beats Galois,
CoroGraph and Blaze by 1.61×, 2.55× and 1.98×, respectively.
Comparison with multi-machine systems. We will invite partici-
pants to witness the benefit of PrismX over the SOTA GraphScope
andGluon, for different query classes. As shown in Table 1 forWCC,
single-node PrismX outperforms a 10-node cluster by 1.50–4.53×.
It highlights the cost effectiveness of a single-machine system.

(3) Parallel scalability. One can observe the parallel scalability
of PrismX by varying query classes and the number of CPU cores.
As shown in Figure 3, the system panel will also visualize system
speedups under different parallelism settings. We will see that,
e.g., using 4× cores for in-memory workloads, PrismX gets a 2.60×

Table 1: System performance comparison for WCC.

Graph Type System Time (s) I/O (GB)

web-sk

In-Memory
PrismX 3.1 N/A

CoroGraph 7.9 (2.55×) N/A
Galois 5.0 (1.61×) N/A

Out-of-Core

PrismX 21.6 8.3
MiniGraph 78.9 (3.65×) 21.5 (2.59×)

Blaze 42.8 (1.98×) 31.3 (3.77×)
GridGraph 42.6 (1.97×) 12.5 (1.51×)

Multi-Machine
PrismX (1 node) 24.7 8.3

GraphScope (10 node) 37.0 (1.50×) N/A
Gluon (10 node) 112.0 (4.53×) N/A

clue-web
In-Memory

PrismX 76.4 N/A
Galois 168.3 (2.20×) N/A
Ligra 2290.0 (29.97×) N/A

Out-of-Core PrismX 304.7 170.2
Blaze 1396.7 (4.58×) 237.4 (1.39×)

speedup, better than the 2.54× of Ligra and the 1.43× of Galois.

(4) Application. Participants are also invited to experience the
application of PrismX in credit risk assessment. A user𝐴 is likely to
default on a loan if𝐴 has direct or indirect transactions with at least
𝛿 high-risk users. In a graph 𝐺 where a transaction is abstracted as
an edge between users, it is to flag any user who has at least 𝛿 high-
risk users in its two-hop neighborhood.We adopt 2Count to identify
such flagged users. We will demonstrate the PrismX program for
this application, and visualize the findings over web-sk as 𝐺 .

ACKNOWLEDGMENTS
This work is partially supported by China NSFC 62225202.

REFERENCES
[1] Roshan Dathathri, Gurbinder Gill, Loc Hoang, Hoang-Vu Dang, Alex Brooks,

Nikoli Dryden, Marc Snir, and Keshav Pingali. 2018. Gluon: A Communication-
Optimizing Substrate for Distributed Heterogeneous Graph Analytics. In PLDI.

[2] Wenfei Fan, Tao He, Longbin Lai, Xue Li, Yong Li, Zhao Li, Zhengping Qian,
Chao Tian, Lei Wang, Jingbo Xu, Youyang Yao, Qiang Yin, Wenyuan Yu, Kai
Zeng, Kun Zhao, Jingren Zhou, Diwen Zhu, and Rong Zhu. 2021. GraphScope:
A Unified Engine For Big Graph Processing. PVLDB 14, 12 (2021), 2879–2892.

[3] Wenfei Fan,Wenyuan Yu, Jingbo Xu, Jingren Zhou, XiaoJian Luo, Qiang Yin, Ping
Lu, Yang Cao, and Ruiqi Xu. 2018. Parallelizing Sequential Graph Computations.
ACM Trans. Database Syst. 43, 18 (2018).

[4] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs.
In OSDI.

[5] J. Kim and S. Swanson. 2022. Blaze: Fast graph processing on fast SSDs. In SC.
[6] Clyde P. Kruskal, Larry Rudolph, and Marc Snir. 1990. A complexity theory of

efficient parallel algorithms. Theor. Comput. Sci. 71, 1 (1990), 95–132.
[7] Grzegorz Malewicz, Matthew H. Austern, Aart J. C. Bik, James C. Dehnert, Ilan

Horn, Naty Leiser, and Grzegorz Czajkowski. 2010. Pregel: A system for large-
scale graph processing. In SIGMOD. 135–146.

[8] Frank McSherry, Michael Isard, and Derek Gordon Murray. 2015. Scalability!
But at what COST?. In HotOS.

[9] Robin Milner. 1989. Communication and Concurrency. Prentice Hall.
[10] Donald Nguyen, Andrew Lenharth, and Keshav Pingali. 2013. A lightweight

infrastructure for graph analytics. In SOSP. ACM, 456–471.
[11] Yossi Shiloach and Uzi Vishkin. 1982. An𝑂 (log𝑛) parallel connectivity algo-

rithm. Journal of Algorithms 3, 1 (1982), 57–67.
[12] Stergios Stergiou, Dipen Rughwani, and Kostas Tsioutsiouliklis. 2018. Shortcut-

ting label propagation for distributed connected components. In WSDM.
[13] Leslie G. Valiant. 1990. General Purpose Parallel Architectures. In Handbook of

Theoretical Computer Science, Volume A: Algorithms and Complexity. 943–972.
[14] Xiangyu Zhi, Xiao Yan, Bo Tang, Ziyao Yin, Yanchao Zhu, and Minqi Zhou. 2023.

CoroGraph: Bridging Cache Efficiency and Work Efficiency for Graph Algorithm
Execution. PVLDB 17, 4 (2023).

[15] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph: Large-Scale
Graph Processing on a Single Machine Using 2-Level Hierarchical Partitioning.
In USENIX ATC. 375–386.

[16] Xiaoke Zhu, Yang Liu, Shuhao Liu, and Wenfei Fan. 2023. MiniGraph: Querying
big graphs with a single machine. In PVLDB, Vol. 16. 2172–2185.

4488

	Abstract
	1 Introduction
	2 System Overview
	2.1 Programming Model
	2.2 System Architecture
	2.3 Optimizations

	3 Demonstration Overview
	3.1 Demonstration Setting
	3.2 Demonstration Plan

	Acknowledgments
	References

